Presentation is loading. Please wait.

Presentation is loading. Please wait.

Cosmic Microwave Background Acoustic Oscillations, Angular Power Spectrum, Imaging and Implications for Cosmology Carlo Baccigalupi, March 31, 2004.

Similar presentations


Presentation on theme: "Cosmic Microwave Background Acoustic Oscillations, Angular Power Spectrum, Imaging and Implications for Cosmology Carlo Baccigalupi, March 31, 2004."— Presentation transcript:

1 Cosmic Microwave Background Acoustic Oscillations, Angular Power Spectrum, Imaging and Implications for Cosmology Carlo Baccigalupi, March 31, 2004

2 Outline… Present: angular powerPresent: angular power Future: ImagingFuture: Imaging CMB cleaningCMB cleaning Primordial non-GaussianityPrimordial non-Gaussianity ReionizationReionization LensingLensing …

3 The Present CMB: Measuring Angular Power

4 Before And After The First Light

5 From COBE to WMAP Courtesy of the NASA/WMAP Science Team

6 WMAP Maps 23 GHz, 0.82 o, 6 mK/  N obs 33 GHz, 0.62 o, 3 mK/  N obs 41 GHz, 0.49 o, 2 mK/  N obs 61 GHz, 0.33 o, 1.4 mK/  N obs 94 GHz, 0.21 o, 1.4 mK/  N obs N obs ' 10 3 Courtesy of the NASA/WMAP Science Team

7 The CMB Angular Power Spctrum

8 Throwing Pebbles In The Primordial Pond Homogeneity & Isotropy Black Body Spectrum + + + Courtesy of the NASA/WMAP Science Team

9 The Sound Of The Early Universe Isocurvature Adiabatic

10

11

12 +

13 The Window On The Early Universe  T/T /  /   0 on all scales

14 Cosmological Parameters Basic Analysis: h, n s, k ¢ dn s /dk,  b h 2,  m h 2, A,  WMAP, WMAP+ACBAR+CBI+2dF+Lyman  Extension: , m ,w DE, r h=0.71 § 0.06, 0.71 +0.04 n s =0.91 § 0.06, 0.93 § 0.03 k ¢ dn s /dk =..., -0.031 +0.016 -0.017  b h 2 =0.022 § 0.001, 0.0224 § 0.0009  m h 2 =0.14 § 0.01, 0.135 +0.008 -0.009 A=0.9 § 0.1, 0.83 +0.09 -0.08 -0.03  =0.20 § 0.07, 0.17 § 0.06

15 Extension:  WMAP+ACBAR+CBI+HST+SNIa+(H 0 >50 km/sec/Mpc):  =1.02 § 0.02 Extension: m  Extension: w DE Extension: r WMAP+ACBAR+CBI+2dF:   h 2 =  i m i /93.5 eV < 0.0076 ´ m  <0.23 eV WMAP+ACBAR+CBI+HST+SNIa+2dF: w DE < -0.78 WMAP+ACBAR+CBI+2dF+infl.cons.rel.: r < -0.71

16 Reionisation C l T / exp(-2  ) on l > l rh C l T,TE,E,B boosted on l < l rh  ' 0.12

17 The Future CMB: Imaging Cosmology

18 CMB Spectrum…

19 Reionization: Non-Gaussian Lensing: Non-GaussianPrimordial GWs Primordial Density Perts.: non-Gaussian?

20 CMB Spectrum…

21 Planck According To Dodelson & Hu 2003

22 True CMB…

23 WMAP CMB…

24 True CMB…

25 Planck CMB…

26 True CMB…

27 CMBpol CMB…

28 CMB Corrupted

29 The Future CMB: Foreground Removal

30 CMB Corrupted

31 Fast Independent Component Analysis (FastICA) x=As+n, find W such that Wx=s+Wn FastICA main loop: construct W row by row FastICA main loop: construct W row by row Choose initial w Update through w new =E[xg(w T x)]-wE(g’(w T x)) Compare with w. If not converged go back; if converged start up next row, keeping orthogonality

32 OUTIN FastICA on Planck Simulations Maino et al. 2002 Planck nominal performance

33 See Baccigalupi et al. 2003 for results with Planck nominal performance Component Separation in Polarisation

34 Perform Monte Carlo simulations to quantify the effect of noise distributionPerform Monte Carlo simulations to quantify the effect of noise distribution Build Criteria to Identify Physical Components in a Heavy Noise EnviromentBuild Criteria to Identify Physical Components in a Heavy Noise Enviroment Add priors to check quality and consistency of the resultsAdd priors to check quality and consistency of the results Extract Cosmological Parameters and Foreground ScienceExtract Cosmological Parameters and Foreground Science FastICA and COBE Maino et al. 2003

35 FastICA & COBE Maino et al. 2003 BlindNon-Blind

36 The Future CMB: Imaging Physical Cosmology

37 Primordial non-Gaussianity Liguori et al. 2003  =  L +f NL (  L 2 - ) The simplest inflationary scenario predicts f NL ' 10 -1 WMAP: -58< f NL < -134 Planck forecast in progress

38 Imaging Reionization… 9.5 arcminutes  T/T Salvaterra, Ferrara et al. 2004 in prep. Normal Stars in proto-galaxies 20% escape fraction CMB scattering on moving electorns  compatible with WMAP

39 Dark Energy & CMB: beyond C l s Giovi et al. 2003, PRD in press, astro-ph/0308118

40 CMB bispectrum B l m l` m` l`` m`` =a lm a l`m` a l``m`` a lm = s  (  )Y lm (  )d  B l l`l`` =  m m` m`` ( m l m` l` m`` l`` ) a lm a l`m` a l``m`` l l` l``  (  ) ´  T(  )/T

41 CMB bispectrum & Structure Formation =0 =0  0  0

42 CMB bispectrum & Structure Formation =[(2l+1)(2l`+1)(2l``+1)/16  ] 1/2 ( 0 l 0 l` 0`` l`` ) ¢ =[(2l+1)(2l`+1)(2l``+1)/16  ] 1/2 ( 0 l 0 l` 0`` l`` ) ¢ ¢ [l(l+1)- l`(l`+1)+ l``(l``+1) ] C l Q(l``) +Perm. Q(l)= s 0 dec D(z) F(z) dz D(z)=[r(z dec )-r(z)]/r(z dec )r(z) 3 F(z)=dP  /dz| k=l/r(z) P  =(3  m0 /2) 2 (H 0 /ck) 4 P(k,z)(1+z) 2 P(k,z)=Ak n T(k,z) 2  (  ) =  lss (  +  )+  ISW '  lss (  )+ r  lss (  ) ¢   ISW (  )=2 s 0 dec dr d  (r,  )/d   =2 s 0 dec dr[(r-r dec )/r dec r]  r,  ) Hu & White 1997, Bartelmann & Schneider 2001, Komatsu & Spergel 2001, Verde & Spergel 2002

43 CMB bispectrum & Structure Formation l -1 =2  /k=r(z 3 )/l =2  /k=r(z 3 )/l =r(z 2 )/l =r(z 2 )/l =r(z 1 )/l =r(z 1 )/l r(z 1 ) r(z 2 ) r(z 3 ) z1z1z1z1 z2z2z2z2 z3z3z3z3 z r

44 CMB bispectrum line of sight chronology l -1 horizon crossing,  decaying linearly, dQ/dz>0 z !1 :super-horizon scales in a flat CDM universe, dP  /d  =0, dQ/dz ! 0 z r Non-linearity,  grows, dQ/dz<0 z ! 0, vanishes, dQ/dz ! 0 onset of acceleration, change in cosmic equation of state,  decaying linearly, dQ/dz>0

45 CMB bispectrum line of sight distribution Giovi et al. 2003, PRD in press, astro-ph/0308118

46 CMB bispectrum & Dark Energy Quintessence reference models SUGRA RP

47 CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118 Ma et al. 1999, Smith et al. 2003

48 CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118

49 CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118

50 CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118

51 CMB bispectrum & Structure Formation =0 =0  0  0 Giovi, Liguori et al. 2004, in preparation  =2 s 0 dec dr[(r-r dec )/r dec r]  r,  )

52 Continua… Component Separation & WMAP…Component Separation & WMAP… Impact of CMB bispectrum on Planck Cosmological Parameter Estimation…Impact of CMB bispectrum on Planck Cosmological Parameter Estimation… Weakly Lensed CMB Templates, Semi-analytical…Weakly Lensed CMB Templates, Semi-analytical… Weakly Lensed CMB Templates, Numerical…Weakly Lensed CMB Templates, Numerical… Weakly Lensed CMB Templates, Polarisation…Weakly Lensed CMB Templates, Polarisation… Weakly Lensed CMB Templates, Comparison with Gravitational Wave Signal…Weakly Lensed CMB Templates, Comparison with Gravitational Wave Signal…


Download ppt "Cosmic Microwave Background Acoustic Oscillations, Angular Power Spectrum, Imaging and Implications for Cosmology Carlo Baccigalupi, March 31, 2004."

Similar presentations


Ads by Google