Download presentation
Presentation is loading. Please wait.
Published byErika Wilson Modified over 9 years ago
1
Cosmic Microwave Background Acoustic Oscillations, Angular Power Spectrum, Imaging and Implications for Cosmology Carlo Baccigalupi, March 31, 2004
2
Outline… Present: angular powerPresent: angular power Future: ImagingFuture: Imaging CMB cleaningCMB cleaning Primordial non-GaussianityPrimordial non-Gaussianity ReionizationReionization LensingLensing …
3
The Present CMB: Measuring Angular Power
4
Before And After The First Light
5
From COBE to WMAP Courtesy of the NASA/WMAP Science Team
6
WMAP Maps 23 GHz, 0.82 o, 6 mK/ N obs 33 GHz, 0.62 o, 3 mK/ N obs 41 GHz, 0.49 o, 2 mK/ N obs 61 GHz, 0.33 o, 1.4 mK/ N obs 94 GHz, 0.21 o, 1.4 mK/ N obs N obs ' 10 3 Courtesy of the NASA/WMAP Science Team
7
The CMB Angular Power Spctrum
8
Throwing Pebbles In The Primordial Pond Homogeneity & Isotropy Black Body Spectrum + + + Courtesy of the NASA/WMAP Science Team
9
The Sound Of The Early Universe Isocurvature Adiabatic
12
+
13
The Window On The Early Universe T/T / / 0 on all scales
14
Cosmological Parameters Basic Analysis: h, n s, k ¢ dn s /dk, b h 2, m h 2, A, WMAP, WMAP+ACBAR+CBI+2dF+Lyman Extension: , m ,w DE, r h=0.71 § 0.06, 0.71 +0.04 n s =0.91 § 0.06, 0.93 § 0.03 k ¢ dn s /dk =..., -0.031 +0.016 -0.017 b h 2 =0.022 § 0.001, 0.0224 § 0.0009 m h 2 =0.14 § 0.01, 0.135 +0.008 -0.009 A=0.9 § 0.1, 0.83 +0.09 -0.08 -0.03 =0.20 § 0.07, 0.17 § 0.06
15
Extension: WMAP+ACBAR+CBI+HST+SNIa+(H 0 >50 km/sec/Mpc): =1.02 § 0.02 Extension: m Extension: w DE Extension: r WMAP+ACBAR+CBI+2dF: h 2 = i m i /93.5 eV < 0.0076 ´ m <0.23 eV WMAP+ACBAR+CBI+HST+SNIa+2dF: w DE < -0.78 WMAP+ACBAR+CBI+2dF+infl.cons.rel.: r < -0.71
16
Reionisation C l T / exp(-2 ) on l > l rh C l T,TE,E,B boosted on l < l rh ' 0.12
17
The Future CMB: Imaging Cosmology
18
CMB Spectrum…
19
Reionization: Non-Gaussian Lensing: Non-GaussianPrimordial GWs Primordial Density Perts.: non-Gaussian?
20
CMB Spectrum…
21
Planck According To Dodelson & Hu 2003
22
True CMB…
23
WMAP CMB…
24
True CMB…
25
Planck CMB…
26
True CMB…
27
CMBpol CMB…
28
CMB Corrupted
29
The Future CMB: Foreground Removal
30
CMB Corrupted
31
Fast Independent Component Analysis (FastICA) x=As+n, find W such that Wx=s+Wn FastICA main loop: construct W row by row FastICA main loop: construct W row by row Choose initial w Update through w new =E[xg(w T x)]-wE(g’(w T x)) Compare with w. If not converged go back; if converged start up next row, keeping orthogonality
32
OUTIN FastICA on Planck Simulations Maino et al. 2002 Planck nominal performance
33
See Baccigalupi et al. 2003 for results with Planck nominal performance Component Separation in Polarisation
34
Perform Monte Carlo simulations to quantify the effect of noise distributionPerform Monte Carlo simulations to quantify the effect of noise distribution Build Criteria to Identify Physical Components in a Heavy Noise EnviromentBuild Criteria to Identify Physical Components in a Heavy Noise Enviroment Add priors to check quality and consistency of the resultsAdd priors to check quality and consistency of the results Extract Cosmological Parameters and Foreground ScienceExtract Cosmological Parameters and Foreground Science FastICA and COBE Maino et al. 2003
35
FastICA & COBE Maino et al. 2003 BlindNon-Blind
36
The Future CMB: Imaging Physical Cosmology
37
Primordial non-Gaussianity Liguori et al. 2003 = L +f NL ( L 2 - ) The simplest inflationary scenario predicts f NL ' 10 -1 WMAP: -58< f NL < -134 Planck forecast in progress
38
Imaging Reionization… 9.5 arcminutes T/T Salvaterra, Ferrara et al. 2004 in prep. Normal Stars in proto-galaxies 20% escape fraction CMB scattering on moving electorns compatible with WMAP
39
Dark Energy & CMB: beyond C l s Giovi et al. 2003, PRD in press, astro-ph/0308118
40
CMB bispectrum B l m l` m` l`` m`` =a lm a l`m` a l``m`` a lm = s ( )Y lm ( )d B l l`l`` = m m` m`` ( m l m` l` m`` l`` ) a lm a l`m` a l``m`` l l` l`` ( ) ´ T( )/T
41
CMB bispectrum & Structure Formation =0 =0 0 0
42
CMB bispectrum & Structure Formation =[(2l+1)(2l`+1)(2l``+1)/16 ] 1/2 ( 0 l 0 l` 0`` l`` ) ¢ =[(2l+1)(2l`+1)(2l``+1)/16 ] 1/2 ( 0 l 0 l` 0`` l`` ) ¢ ¢ [l(l+1)- l`(l`+1)+ l``(l``+1) ] C l Q(l``) +Perm. Q(l)= s 0 dec D(z) F(z) dz D(z)=[r(z dec )-r(z)]/r(z dec )r(z) 3 F(z)=dP /dz| k=l/r(z) P =(3 m0 /2) 2 (H 0 /ck) 4 P(k,z)(1+z) 2 P(k,z)=Ak n T(k,z) 2 ( ) = lss ( + )+ ISW ' lss ( )+ r lss ( ) ¢ ISW ( )=2 s 0 dec dr d (r, )/d =2 s 0 dec dr[(r-r dec )/r dec r] r, ) Hu & White 1997, Bartelmann & Schneider 2001, Komatsu & Spergel 2001, Verde & Spergel 2002
43
CMB bispectrum & Structure Formation l -1 =2 /k=r(z 3 )/l =2 /k=r(z 3 )/l =r(z 2 )/l =r(z 2 )/l =r(z 1 )/l =r(z 1 )/l r(z 1 ) r(z 2 ) r(z 3 ) z1z1z1z1 z2z2z2z2 z3z3z3z3 z r
44
CMB bispectrum line of sight chronology l -1 horizon crossing, decaying linearly, dQ/dz>0 z !1 :super-horizon scales in a flat CDM universe, dP /d =0, dQ/dz ! 0 z r Non-linearity, grows, dQ/dz<0 z ! 0, vanishes, dQ/dz ! 0 onset of acceleration, change in cosmic equation of state, decaying linearly, dQ/dz>0
45
CMB bispectrum line of sight distribution Giovi et al. 2003, PRD in press, astro-ph/0308118
46
CMB bispectrum & Dark Energy Quintessence reference models SUGRA RP
47
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118 Ma et al. 1999, Smith et al. 2003
48
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118
49
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118
50
CMB bispectrum & Dark Energy Giovi et al. 2003, PRD in press, astro-ph/0308118
51
CMB bispectrum & Structure Formation =0 =0 0 0 Giovi, Liguori et al. 2004, in preparation =2 s 0 dec dr[(r-r dec )/r dec r] r, )
52
Continua… Component Separation & WMAP…Component Separation & WMAP… Impact of CMB bispectrum on Planck Cosmological Parameter Estimation…Impact of CMB bispectrum on Planck Cosmological Parameter Estimation… Weakly Lensed CMB Templates, Semi-analytical…Weakly Lensed CMB Templates, Semi-analytical… Weakly Lensed CMB Templates, Numerical…Weakly Lensed CMB Templates, Numerical… Weakly Lensed CMB Templates, Polarisation…Weakly Lensed CMB Templates, Polarisation… Weakly Lensed CMB Templates, Comparison with Gravitational Wave Signal…Weakly Lensed CMB Templates, Comparison with Gravitational Wave Signal…
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.