Download presentation
Presentation is loading. Please wait.
Published byColeen Paul Modified over 9 years ago
1
Niels Tuning (1) “Elementary Particles” Lecture 5 Niels Tuning Harry van der Graaf
2
Thanks Ik ben schatplichtig aan: –Dr. Ivo van Vulpen (UvA) –Prof. dr. ir. Bob van Eijk (UT) –Prof. dr. Marcel Merk (VU) Niels Tuning (2)
3
Homework
4
Exercises Lecture 4: Niels Tuning (4) Adjoint spinor: +
5
Exercises Lecture 4: Niels Tuning (5) +
6
Exercises Lecture 4: Niels Tuning (6)
7
Exercises Lecture 4: Niels Tuning (7)
8
Plan 1)Intro: Standard Model & Relativity 2)Basis 1)Atom model, strong and weak force 2)Scattering theory 3)Hadrons 1)Isospin, strangeness 2)Quark model, GIM 4)Standard Model 1)QED 2)Parity, neutrinos, weak inteaction 3)QCD 5)e + e - and DIS 6)Higgs and CKM Niels Tuning (8) 1900-1940 1945-1965 1965-1975 1975-2000 2000-2015 17 Feb 3 Mar 17 Mar 21 Apr 19 May 10 Feb
9
Summary Lects. 1-4
10
Theory of relativity –Lorentz transformations (“boost”) –Calculate energy in collissions 4-vector calculus High energies needed to make (new) particles Lecture 1: Relativity Niels Tuning (10)
11
4-vectors: –Space-time x –Energie-momentum p –4-potential A –Derivative ∂ –Covariant derivative D –Gamma matrices Tensors –Metric g –Electromagnetic tensor F Lecture 1: 4-vector examples Niels Tuning (11)
12
Schrödinger equation –Time-dependence of wave function Klein-Gordon equation –Relativistic equation of motion of scalar particles Dirac equation –Relativistically correct, and linear –Equation of motion for spin-1/2 particles –Described by 4-component spinors –Prediction of anti-matter Lecture 2: Quantum Mechanics & Scattering Niels Tuning (12)
13
Scattering Theory –(Relative) probability for certain process to happen –Cross section Fermi’s Golden Rule –Decay: “decay width” Γ –Scattering: “cross section” σ Lecture 2: Quantum Mechanics & Scattering Niels Tuning (13) Classic Scattering amplitude Scattering amplitude in Quantum Field Theory a → b + c a + b → c + d
14
“Partice Zoo” not elegant Hadrons consist of quarks Observed symmetries –Same mass of hadrons:isospin –Slow decay of K, Λ :strangeness –Fermi-Dirac statistics Δ ++, Ω :color Combining/decaying particles with (iso)spin –Clebsch-Gordan coefficients Lecture 3: Quarkmodel & Isospin Niels Tuning (14)
15
Arbitrary “gauge” Physics invariant Introduce “gauge” fields in derivative Interactions! QED Weak interactions QCD Lecture 4: Gauge symmetry and Interactions Niels Tuning (15) 1 photon 3 weak bosons 8 gluons
16
1)Reminder: Gauge invariance, and the Lagrangian Electro-magnetic interactions: QEDElectric charge Weak interactions: “QFT”Weak isospin/Flavour Strong interactions: QCDColour 2)e + e - scattering e + e - →μ + μ - e + e - →cc Discovery of charm and colour (quantity “R”) e + e - →qq g Discovery of the gluon e + e - →Z 3 neutrino’s e + e - → WW 3)Deep Inelastic Scattering (DIS) (lepton-proton scattering) Quarkmodel: do quarks exist?? Sub-structure Bjorken-x, sum rules Scaling (violations) ‘Parton density functions’ (pdf) and ‘structure functions’ Outline for today: Niels Tuning (16)
17
QED & QCD
18
spin-0 particles (Klein-Gordon) spin-1/2 fermions (Dirac) Photons Lagrangian Equation of motion Niels Tuning (18) Klein-Gordon equation Dirac equation Maxwell equations
19
1)Assume symmetry ψ → ψ’= ψe iα(x) 2)Keep Eqs valid Covariant derivative Gauge Invariance Niels Tuning (19) 1)Arbitrary gauge 2)Keep Eqs valid This implies: ψ → ψ’= ψe iα We started globally: Then we went local:
20
Quantum Electro Dynamics - QED Niels Tuning (20) Fermion ψ with mass m Interaction with coupling q Photon field A μ m qγμqγμ
21
Weak Interaction
22
We had: How about? More gauge transformations Niels Tuning (22)
23
We had: How about? Why? Historical origin: proton and neutron exhibit isospin symmetry More gauge transformations Niels Tuning (23)
24
We had: How about? Introduce new covariant derivative: B μ is now 2x2 matrix: with three gauge fields: More gauge transformations Niels Tuning (24)
25
The three b, are associated to the W +,W - and Z 0 Electro-weak theory Niels Tuning (25)
26
We measured that left and right are different! Instead of “strong” isospin, switch to “weak” isospin: Formalism the same Electroweak theory Niels Tuning (26) (What is difference between chirality and helicity…?)
27
We measured that left and right are different! Instead of “strong” isospin, switch to “weak” isospin: Formalism the same Electroweak theory Niels Tuning (27) dLdL g W+W+ uLuL
28
QCD
29
Symmetries Niels Tuning (29) Charge Isospin Color
30
We had: U(1) (QED) Then: SU(2) (Weak) How about: SU(3) (QCD) More gauge transformations Niels Tuning (30) (Why 8…? Group theory: 3x3=8+1 … )
31
We had: U(1) (QED) Then: SU(2) (Weak) How about: SU(3) (QCD) SU(2) SU(3) Niels Tuning (31) Gell-Mann matrices: SU(3)-equivalent of Pauli-matrices
32
Symmetries Niels Tuning (32) ChargeU(1) (QED) IsospinSU(2) (Weak) ColorSU(3) (QCD) (Why 8…? Group theory: 3x3=8+1 … )
33
We had: U(1) (QED) Then: SU(2) (Weak) How about: SU(3) (QCD) More gauge transformations Niels Tuning (33) a=1,8: 8 gluons Another covariant derivative: with 8 A μ fields: which transform as: Gluonic field tensor:
34
QCD Lagrangian Niels Tuning (34) Fermion ψ with mass m Interaction with coupling q 8 Gluon fields A μ m Self-interaction qγμqγμ
35
Local SU(3) gauge transformation Introduce 8 A μ a gauge fields Non-“Abelian” theory, Self-interacting gluons –Gluons have (color) charge Different “running” Local U(1) gauge transformation Introduce 1 A μ gauge field “Abelian” theory, No self-interacting photon –Photons do not have (electric) charge Different “running” QED QCD QED QCD Niels Tuning (35) QED and QCD
36
Which symmetries do we impose ? QED: U(1) Y 1 degree of freedom: γ Weak Force: SU(2) L 3 degrees of freedom: W +, W - en Z 0 Strong Force: SU(3) C 8 degrees of freedom: 8 gluons All spin-1 Rotations in color space Rotations in weak isospin space Rotations in hypercharge space For example SU(2) L : 2x2 complex matrices (det=1) 3 basis-rotations 3 vector fields
37
Standard Model now (almost) complete! Niels Tuning (37)
38
Standard Model Niels Tuning (38) Fermion fields ψ Gauge fields A μ Interactions through D μ
39
Niels Tuning (39) Prof.dr. J. Ellis Standard Model
40
Niels Tuning (40) Todo-list: e + e - scattering –QED at work (LEP): R, neutrinos e + p scattering –QCD at work (HERA): DIS, structure functions, scaling No masses for W, Z –(LHC/ATLAS) Higgs mechanism, Yukawa couplings Consequences of three families –(LHC/LHCb) CKM-mechanism, CP violation
41
Break? Niels Tuning (41)
42
Consider e + e - →e + e - scattering: More possibilities! –“Higher order” diagrams –Each coupling has strength 1/137 Perturbation series “Running” Coupling Constant (QED) Niels Tuning (42) α~q 2 q q
43
Consider e + e - →e + e - scattering: More possibilities! –“Higher order” diagrams –Each coupling has strength 1/137 Perturbation series Effectively: “Running” Coupling Constant (QED) Niels Tuning (43) α~q 2 q q
44
Coupling depends on the scale! –α(0)=1/137 –α(M 2 Z )=1/128 Effectively: “Running” Coupling Constant (QED) Niels Tuning (44)
45
Do you need all fermions in the loop?? Yes: “Running” Coupling Constant Niels Tuning (45)
46
Running in QCD Also gluon loops It turns out, the gluon has opposite effect! “Running” Coupling Constant Niels Tuning (46)
47
Running in QCD NB: if α s >1 perturbation theory breaks down… “Running” Coupling Constant Niels Tuning (47)
48
Running in QCD High energy: coupling small Asymptotic Freedom Niels Tuning (48) Asymptotic freedom
49
Running in QCD Low energy: coupling big “Confinement” Niels Tuning (49) Confinement barrier
50
Unification? Niels Tuning (50) A reason to believe that there are more particles?
51
Feynman diagrams
52
Fermi’s Golden Rule Niels Tuning (52) Fermi's “golden rule” gives: The transition probability to go from initial state i to final state f 1)Density of final states Integral of final states that can be reached “Phase space” Φ 2)Matrix element Scattering amplitude M 3)Flux factor “Number of incident particles per unit area”
53
Process: A+B → C+D (Explicit Example: ) Niels Tuning (53) 3)Flux factor “Number of incident particles per unit area” Decay: A → C+D 2)Density of final states “How many quantum states can be put in volume V?” “Phase space” Φ
54
How to calculate M ? Example QM: Example spin-1/2 scattering: Feynman Rules Niels Tuning (54)
55
How to calculate M ? Example QM: Example spin-1/2 scattering: Remember: M is “just” a complex number Feynman Rules Niels Tuning (55)
56
Feynman Rules Niels Tuning (56) From (p.149) Halzen & Martin
57
Feynman rules: Example Niels Tuning (57) Process: e - μ - →μ - e -
58
Feynman rules: Example Niels Tuning (58) Process: e - μ - →μ - e - Remember the 4-component spinors in Dirac-space:
59
e + e - Scattering
60
e + e - →μ + μ - e + e - →cc –Confirmation of “color” –Discovery of charm e + e - →qq g –Discovery of the gluon e + e - →tt –Hunt for the top e + e - →Z –3 neutrino’s e + e - →WW Shopping list Niels Tuning (60)
61
e + e - colliders Niels Tuning (61) AcceleratorLab s (GeV) Year SPEARSLAC2 – 81972 - 1990 DORIS I, IIDESY101974 - 1993 CESR(-c)Cornell3.5 - 121979 - 2008 PEPSLAC 20 - 291980 - 1990 PETRADESY12 – 471978 - 1988 TRISTANKEK50 – 601987 - 1995 SLCSLAC901988 - 1998 LEP I, IICERN90 – 2081989 - 2000
62
Examples of e + e - processes time
63
Examples of e + e - processes
64
Rutherford scattering (scattering off static point charge) Mott scattering (now with high energy, taking into account recoil of target and magnetic moment: spin ½) spin-½ spin-½ scattering (average over incoming spin, sum over outgoing spin) Scattering Niels Tuning (64)
65
Point cross section At √ s=10 GeV: σ(e + e - →μ + μ - ) ~ 0.9 nb e+e-→μ+μ-e+e-→μ+μ- Niels Tuning (65)
66
e + e - →hadrons Point cross section At √ s=10 GeV: σ(e + e - →q + q - ) ~ 3.6 nb
67
e+e+ e-e- γ f f - e + e - →hadrons Compare cross section of σ(e + e - →q + q - ) to σ(e + e - →μ + μ - ) Photon couples to fermion charge! Color of quarks? Inspect Ratio R:
68
muons quarks Prediction R: m e+e- < 2m c Without color: R = 2/3 With 3 colors: R = 2
69
muons quarks Without color: R = 10/9 With 3 colors: R = 30/9 Prediction R: m e+e- > 2m c
70
m e+e- (GeV) 1 (3) colors 1.1(3.3) 0.7 (2) prediction 1 0 No color (udsc) No color (uds) with color(udsc) data With color (uds)
71
e+e+ e-e- γ f f - e + e - →hadrons So, quarks have color! How about spin?
72
Sam ‘J’ Ting. Burt ‘ ’ Richter Discovery of charm (J/ November 1976: ‘November revolution’ New meson discovered (J/ ψ ) with mass 3.16 GeV Quark model: J/ ψ consists of pair of c-quarks e + e - →cc
73
Sam ‘J’ Ting. Burt ‘ ’ Richter Discovery of charm (J/ November 1976: ‘November revolution’ New meson discovered (J/ ψ ) with mass 3.16 GeV Quark model: J/ ψ consists of pair of c-quarks e + e - →cc Because of the nearly simultaneous discovery, the J/ψ is the only elementary particle to have a two-letter name. Richter named it "SP", after the SPEAR accelerator used at SLAC; however, none of his coworkers liked that name. After consulting with Greek-born Leo Resvanis to see which Greek letters were still available, and rejecting "iota" because its name implies insignificance, Richter chose "psi" – a name which, as Gerson Goldhaber pointed out, contains the original name "SP", but in reverse order. [2] Coincidentally, later spark chamber pictures often resembled the psi shape. Ting assigned the name "J" to it, which is one letter removed from "K", the name of the already-known strange meson; possibly by coincidence, "J" strongly resembles the Chinese character for Ting's name ( 丁 ). J is also the first letter of Ting's oldest daughter's name, Jeanne.
74
1970: Prediction of charm quark Observation K 0 →μμ Lesson: Loop diagrams are sensitive to heavy particles Intermezzo: “indirect discoveries” … … … GIM, Phys.Rev.D2,1285,1970 s d μ μ “Loop” diagram:
75
e + e - →qq g Niels Tuning (75) From: arXiv:1008.1869 1979
76
J/ψ c e-e- e+e+ γ e + e - →cc cc
77
b e-e- e+e+ bb γ e + e - →bb ? In modern times: yes! Babar experiment at SLAC (USA) Belle experiment at KEK (Japan) e + e - →Υ(4S) → B 0 B 0 M(Υ(4S)) =10579.4 MeV 2 x M(B 0 ) = 10559.2 MeV (coincidence??) “B-factories” Y
78
Intermezzo: bottom discovery Niels Tuning (78) Fermilab (Chicago), 400 GeV proton – fixed target –p + (Cu,Pt) μ + + μ - + anything m(b)~5 GeV –m(bb)~9.5 GeV, so m(b)~5 GeV “background subtracted”:
79
e + e - →tt t e-e- e+e+ γ e + e - cross-section tt 1977: bottom discovered topHow heavy could the top be?? –20 GeV ? –25 GeV ?? –30 GeV ??? –Built Tristan accelerator, with Topaz detector (Japan) –Reached 25.5 GeV in 1986 At minimum of cross section…
80
e + e - →tt t e-e- e+e+ γ e + e - cross-section tt 1977: bottom discovered topHow heavy could the top be?? –20 GeV ? –25 GeV ?? –30 GeV ??? –Built Tristan accelerator, with Topaz detector (Japan) –Reached 25.5 GeV in 1986 At minimum of cross section…
81
ARGUS almost discovered the top quark: m top > 50 GeV Lesson: Loop diagrams are sensitive to heavy particles Intermezzo: “indirect discoveries” ARGUS Coll, Phys.Lett.B192:245,1987 ? b s s b
82
Z-boson f e-e- e+e+ anti-f Z e + e - →Z (From: PDG)
83
Remember: A B+C : Total decay rate τ = ħ /Γ A+B R C+D: Resonance: e + e - →Z Breit-Wigner E 0 - Γ/2 E 0 E 0 - Γ/2 P max P max /2
84
3 families ! e + e - →Z Measure total width, with energy scan: “Z-lineshape” Total width is sum of “partial widths” Measure branching ratios of Z qq and Z l + l - “Invisible width” due to neutrinos
85
e + e - →WW Upgrade of LEP: 90 208 GeV! Enough energy to create WW-pairs and ZH-pairs?!
86
e + e - →WW (a) (b) (c) (a+c) (a+b+c) Triumph for Standard Model:
87
Time?
88
Plan 1)Intro: Standard Model & Relativity 2)Basis 1)Atom model, strong and weak force 2)Scattering theory 3)Hadrons 1)Isospin, strangeness 2)Quark model, GIM 4)Standard Model 1)QED 2)Parity, neutrinos, weak inteaction 3)QCD 5)e + e - and DIS 6)Higgs and CKM Niels Tuning (88) 1900-1940 1945-1965 1965-1975 1975-2000 2000-2015 17 Feb 3 Mar 17 Mar 21 Apr 19 May 10 Feb
89
Intermezzo: Discovery Z and W
90
Gargamelle experiment Neutrinos on target (12,000 liter freon (CF 3 Br) Discovery neutral current υμυμ υμυμ Z quark (nucleon) quark (hadrons) 1973
91
Spokesman UA1 experiment In 1989 Director General CERN Initiator of Energy Amplifier SPS proton-anti-proton collider √s = 540 GeV Carlo RubbiaSimon van der Meer Correcting signal stochastic cooling Direct observation weak-force carrier
92
Discovery Z-boson “Experimental observation of lepton pairs of invariant mass around 95 GeV/c 2 at the CERN SPS collider” Nederlands tintje M l+l- [GeV/c 2 ] Lepton pair mass (4 events) 3 June 1983
93
24 februari 1983 Discovery W-boson Prediction: Observation: 2012: “Experimental observation of isolated large transverse energy electrons with associated missing energy at √s=540 GeV”
94
Deep Inelastic Scattering Lepton – proton scattering or: Hitting something big, using something small
95
Quarkmodel: do quarks exist?? Substructure Bjorken-x, sum rules Scaling ‘Parton density functions’ (pdf) and ‘structure functions’ Scaling violations Shopping list Niels Tuning (95)
96
Scattering Niels Tuning (96) Rutherford scattering (scattering off static point charge) e + e - →μ + μ - scattering (s-channel) e - μ + →e - μ + scattering (t-channel)
97
Point cross section e + q→e + q Niels Tuning (97) e+e+ e+e+ qq
98
Easiest: fixed target –ep scattering –μp scattering –νp scattering 1990’s: ep collider DIS experiments Niels Tuning (98) protons electrons ExperimentAccelLableptonE lep E had Year SLAC-MITSLACe20fixed1967-1973 GargamelleCERN fixed E80 -SLCSLACfixed CHORUSSPSCERN 10-200fixed1998 CCFRTevatronFermilab 30-360fixed NMCSPSCERN 90-280fixed1986-1989 EMC/SMCSPSCERN 100-190fixed1984-1994 BCDMSSPSCERN 100-280fixed ZEUS, H1HERADESYe27.59201992-2007 NB: Table not complete
99
electron proton beam target detector Robert Hofstadter spin ½, r=10 -15 m spin 0 spin ½, point
100
Sub-structure Niels Tuning (100) Remember Rutherford –Back-scatter of α from nucleus Now: –Back-scatter of e from quarks
101
data voorspelling electron proton beam target detector
102
J.D. Bjorken “scaling hypothesis” (1967): If scattering is caused by pointlike constituents structure functions must be independent of Q 2 Would you expect a Q 2 dependence? R. Feynmans “parton model” (1969): Proton consists of ‘constituents’ “Physicists were reluctant to identify these objects with quarks at the time, instead calling them "partons" – a term coined by Richard Feynman.” Scaling Niels Tuning (102)
103
Proton valence quarks sea quarks QCD: deep in the proton
104
Proton valence quarks sea quarks QCD: deep in the proton Two important variables: Q 2 : 4-mom. transfer, scale x: fractional momentum of quark
105
eq scattering: ep scattering: Deep Inelastic Scattering Niels Tuning (105) (From: PhD thesis N.Tuning) Form factor
106
ep scattering: F 2 (x): proton structure function q(x): parton density function Deep Inelastic Scattering Niels Tuning (106)
107
ep scattering: F 2 (x): proton structure function q(x): parton density function But… the proton had 3 quarks?! Sum rules: Parton Densities Niels Tuning (107)
108
Proton: x What is ‘momentum fraction’ distribution of quarks?? Quarks: “Valence” “Sea” (From: Halzen & Martin)
109
Proton: x What is ‘momentum fraction’ distribution of quarks?? Quarks: “Valence” “Sea” Dynamic, QCD ! (From: Halzen & Martin)
110
Proton: x (From: Halzen & Martin) (From: PhD thesis N.Tuning) What is ‘momentum fraction’ distribution of quarks?? Quarks: “Valence” “Sea” Dynamic, QCD ! x=1/3
111
Proton: Q 2 The “deeper” one looks into the proton, the more quarks and gluons
112
Proton: x, Q 2 (From: PhD thesis N.Tuning)
113
Proton: x, Q 2 (From: PhD thesis N.Tuning) The “deeper” one looks into the proton, the more quarks and gluons “QCD evolution” Describes quark-gluon splitting DGLAP evolution eqs:
114
J.D. Bjorken “scaling hypothesis” (1967): If scattering is caused by pointlike constituents structure functions must be independent of Q 2 Would you expect a Q 2 dependence? Yes, due to QCD, ie. quark/gluon splitting ! Matured in mid ‘70s The proton is “dynamic” ! Measurement of F 2 (x,Q 2 ) very accurate test of QCD Scaling violations Niels Tuning (114)
115
Scaling violations Niels Tuning (115) Measurement of F 2 (x,Q 2 ) very accurate test of QCD
116
Proton Structure 45 The deeper you look, the more low-x quarks
117
Proton Structure 45 The deeper you look, the more low-x quarks
118
Proton Structure
119
Proton Structure: knowledge needed for predictions
120
Plan 1)Intro: Standard Model & Relativity 2)Basis 1)Atom model, strong and weak force 2)Scattering theory 3)Hadrons 1)Isospin, strangeness 2)Quark model, GIM 4)Standard Model 1)QED 2)Parity, neutrinos, weak inteaction 3)QCD 5)e + e - and DIS 6)Higgs and CKM Niels Tuning (120) 1900-1940 1945-1965 1965-1975 1975-2000 2000-2015 17 Feb 3 Mar 17 Mar 21 Apr 19 May 10 Feb
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.