Download presentation
Presentation is loading. Please wait.
Published byAsher Howard Modified over 9 years ago
1
lars.kasper@econ.uzh.ch kasper@biomed.ee.ethz.ch Institute for Biomedical Engineering (ETH Zurich) & Computational Neuroeconomics Group (Univ. of Zurich) Z URICH SPM C OURSE 2011 Batch Programming of fMRI Data Analysis Lars Kasper & Christoph Mathys
2
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Overview 2Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11) Introduction & Example Dataset General fMRI Data Analysis Workflow with SPM Quality Assessment of Raw Data Spatial Preprocessing Statistical Design: The General Linear Model Results: Analyzing Contrast & Reporting Within-Subject Batching (Single Subject) Subject-independent Analysis Steps Subject-independent Data Flow (Dependencies) Subject-related data Between-Subject-Batching (Multiple Subject)
3
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Overview 3Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11) Introduction & Example Dataset General fMRI Data Analysis Workflow with SPM Quality Assessment of Raw Data Spatial Preprocessing Statistical Design: The General Linear Model Results: Analyzing Contrast & Reporting Within-Subject Batching (Single Subject) Subject-independent Analysis Steps Subject-independent Data Flow (Dependencies) Subject-related data Between-Subject-Batching (Multiple Subject)
4
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS RealignmentSmoothing Normalisation General linear model Statistical parametric map (SPM) Image time-series Parameter estimates Design matrix Template Kernel Gaussian field theory p <0.05 Statisticalinference Overview of SPM Kasper/Mathys (18-Feb-11)4Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)
5
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS What is batch processing? Repeats same data analysis for many subjects (>=2) Not prone to human errors, reproducible what was done e. g. jobs mat-files Runs automatically, no supervision needed Researcher can concentrate on assessing the results CAVEAT: Tempting to forget about all analysis steps in between which could lead to errors in your conclusions Therefore: Always make sure, that meaningful results were created at each step Using Display/CheckReg to view raw data, preprocessed data Using spm_print to save reported supplementary data output If anything went wrong, use debugging 5Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
6
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS 3 flavors of batching – Goals of this tutorial After finishing this session, you will be able to analyze fMRI datasets using the Graphical User Interface (GUI) of SPM: 2.The Batch Editor of SPM 3.A template Matlab.m-script file to batch very flexibly 6Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
7
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Introducing the Dataset Rik Henson‘s famous vs non-famous faces dataset http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/face_rep_SPM5.html Includes a manual with step-by-step instruction for analysis (homework ;-)) Download from SPM homepage (available for SPM5, but works fine with SPM8) 7Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
8
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Introducing the Dataset Factorial 2 x 2 design to investigate repetition suppression Question: Influence of repeated stimulus presentation on brain activity (accomodation of response)? Each stimulus (pictures of faces) presented twice during a session Condition Rep, Level: 1 or 2 lag between presentations randomized 26 Famous and 26 non-famous faces to differentiate between familiarity (long-term memory) and repetition Condition Fam, Level F(amous) and N(onfamous) Task: Decision whether famous or nonfamous (button-press) 8Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
9
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Introducing the Dataset: Published Results a.Right Fusiform face area Repetition suppression for familiar/famous faces b.Left Occipital face area (posterior, occip. extrastriate) Repetition suppression for familiar AND unfamiliar faces c.Posterior cingulate and bilateral parietal cortex Repetition enhancement 9Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
10
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Overview 10Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11) Introduction & Example Dataset General fMRI Data Analysis Workflow with SPM Quality Assessment of Raw Data Spatial Preprocessing Statistical Design: The General Linear Model Results: Analyzing Contrast & Reporting Within-Subject Batching (Single Subject) Subject-independent Analysis Steps Subject-independent Data Flow (Dependencies) Subject-related data Between-Subject-Batching (Multiple Subject)
11
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Spatial Preprocessing – Realign sd 11Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11) FORMAT P = spm_realign (P,flags) GUI Batch Editor Batch File
12
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Spatial Preprocessing – Unwarp 12Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11) uw_params= spm_uw_estimate (P,uw_est_flags); spm_uw_apply (uw_params,uw_write_ flags); GUI Batch Editor Batch File
13
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Uh…this takes ages… Now you can probably value the benefits of batch processing. If you are still keen on doing all that by hand (good exercise!), refer to the following The SPM manual Most current version in your spm8-folder, sub-folder man/manual.pdf Rik Henson‘s famous vs non-famous faces dataset http://www.fil.ion.ucl.ac.uk/spm/data/face_rep/face_rep_SPM5.html Included in SPM manual, chapter 29, with step-by-step instruction for analysis Available for SPM5, but works fine with SPM8 13Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
14
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Overview 14Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11) Introduction & Example Dataset General fMRI Data Analysis Workflow with SPM Quality Assessment of Raw Data Spatial Preprocessing Statistical Design: The General Linear Model Results: Analyzing Contrast & Reporting Within-Subject Batching (Single Subject) Subject-independent Analysis Steps Subject-independent Data Flow (Dependencies) Subject-related data Between-Subject-Batching (Multiple Subject)
15
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS General Workflow for the batch interface 15Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11) Top-down approach Specify subject-independent data/analysis steps Specify subject-independent file-dependencies (data flow) Specify subject-related data (e.g. event-timing)
16
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS 1. The subject-independent analysis parts Load all modules first (in right order!) Then specify details (where Xs are found) which are subject independent TR Nslices model factors contrasts of interest 16Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
17
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS 2. Data-flow specification (subject-independent dependencies) Specify, which results of which steps are input to another step (DEP-sign) e.g. smoothed images needed for model spec Afterwards save this job as template.mat file 17Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
18
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS 3. Add subject-dependent data/information Essentially go to all X‘s and fill in appropriate values e.g. the.mat-file of the conditions onsets/durations Save this job as subject-batch file & Run 18Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
19
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Overview 19Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11) Introduction & Example Dataset General fMRI Data Analysis Workflow with SPM Quality Assessment of Raw Data Spatial Preprocessing Statistical Design: The General Linear Model Results: Analyzing Contrast & Reporting Within-Subject Batching (Single Subject) Subject-independent Analysis Steps Subject-independent Data Flow (Dependencies) Subject-related data Between-Subject-Batching (Multiple Subject)
20
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Between-Subject-Batching (Multiple Subject) Make sure, parameters to be adjusted have an X (clear value) for the single subject template Specify a meta-job with Run batch Create one run for every subject and add missing parameter values (in right order) 20Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
21
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Resources and Useful Literature All step-by-step instructions can be found in the SPM manual, chapter 40 Also multiple-session and multiple subjects processing included The SPM helpline/mailing list E.g. bug precluding the batch-file selector form working was fixed here, but not in the updates yet https://www.jiscmail.ac.uk/cgi- bin/webadmin?A2=ind1001&L=SPM&P=R39357 Batch templates are in your spm path: Configured subject-independent analysis steps /man/batch/face_single_subject_template_nodeps.m With dependencies included /man/batch/face_single_subject_template.m With multiple subjects /man/batch/face_multi_subject_template.m 21Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
22
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Many, many thanks to Klaas Enno Stephan The SPM developers (FIL methods group) 22Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
23
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Extending the batchfile with SPM GUI functions Debugging Generally a good idea to find out how things work in SPM Crucial for batch-programming using a.m-file Here: debug spm.m by setting a breakpoint If called function found, use edit.m to look at the %comments in the file 23Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
24
Z URICH SPM C OURSE 2011 B ATCH P ROGRAMMING OF F MRI D ATA A NALYSIS Tuning the engine – Matlab workspace variables e.g. to manipulate SPM.mat or jobs by hand also important during debugging, how variables are defined and changed 24Computational Neuroeconomics (Prof. Stephan, USZ) / MR-Technology (Prof. Prüssmann, IBT)Kasper/Mathys (18-Feb-11)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.