Download presentation
Presentation is loading. Please wait.
Published byChristian Newton Modified over 9 years ago
1
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell and Jane Reece Lectures by Chris Romero, updated by Erin Barley with contributions from Joan Sharp Chapter 52 An Introduction to Ecology and the Biosphere
2
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Overview: The Scope of Ecology Ecology is the scientific study of the interactions between organisms and the environment These interactions determine distribution of organisms and their abundance Ecology reveals the richness of the biosphere
3
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings The Scope of Ecological Research Ecologists work at levels ranging from individual organisms to the planet
4
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Organismal ecology studies how an organism’s structure, physiology, and (for animals) behavior meet environmental challenges
5
Fig. 52-1
6
Fig. 52-2 Organismal ecology Population ecology Community ecology Ecosystem ecology Landscape ecology Global ecology
7
Fig. 52-2a
8
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings A population is a group of individuals of the same species living in an area Population ecology focuses on factors affecting how many individuals of a species live in an area
9
Fig. 52-2b
10
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings A community is a group of populations of different species in an area Community ecology deals with the whole array of interacting species in a community
11
Fig. 52-2c
12
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings An ecosystem is the community of organisms in an area and the physical factors with which they interact Ecosystem ecology emphasizes energy flow and chemical cycling among the various biotic and abiotic components
13
Fig. 52-2d
14
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings A landscape is a mosaic of connected ecosystems Landscape ecology deals with arrays of ecosystems and how they are arranged in a geographic region
15
Fig. 52-2e
16
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings The biosphere is the global ecosystem, the sum of all the planet’s ecosystems Global ecology examines the influence of energy and materials on organisms across the biosphere
17
Fig. 52-2f
18
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Concept 52.2: Interactions between organisms and the environment limit the distribution of species Ecologists have long recognized global and regional patterns of distribution of organisms within the biosphere Biogeography is a good starting point for understanding what limits geographic distribution of species Ecologists recognize two kinds of factors that determine distribution: biotic, or living factors, and abiotic, or nonliving factors
19
Fig. 52-5 Kangaroos/km 2 0–0.1 0.1–1 1–5 5–10 10–20 > 20 Limits of distribution
20
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Ecologists consider multiple factors when attempting to explain the distribution of species
21
Fig. 52-6 Why is species X absent from an area? Does dispersal limit its distribution? Does behavior limit its distribution? Area inaccessible or insufficient time Yes No Yes Habitat selection Do biotic factors (other species) limit its distribution? Predation, parasitism, competition, disease Do abiotic factors limit its distribution? Chemical factors Physical factors Water Oxygen Salinity pH Soil nutrients, etc. Temperature Light Soil structure Fire Moisture, etc.
22
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Dispersal and Distribution Dispersal is movement of individuals away from centers of high population density or from their area of origin Dispersal contributes to global distribution of organisms
23
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Natural Range Expansions Natural range expansions show the influence of dispersal on distribution
24
Fig. 52-7 Current 1966 1970 1965 1960 1961 1958 1951 1943 1937 1956 1970
25
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Species Transplants Species transplants include organisms that are intentionally or accidentally relocated from their original distribution Species transplants can disrupt the communities or ecosystems to which they have been introduced
26
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Behavior and Habitat Selection Some organisms do not occupy all of their potential range Species distribution may be limited by habitat selection behavior
27
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Biotic Factors Biotic factors that affect the distribution of organisms may include: – Interactions with other species – Predation – Competition
28
Fig. 52-8 RESULTS Sea urchin 100 80 60 40 20 0 Limpet Seaweed cover (%) Both limpets and urchins removed Only urchins removed Only limpets removed Control (both urchins and limpets present) August 1982 August 1983 February 1983 February 1984
29
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Abiotic Factors Abiotic factors affecting distribution of organisms include: – Temperature – Water – Sunlight – Wind – Rocks and soil Most abiotic factors vary in space and time
30
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Temperature Environmental temperature is an important factor in distribution of organisms because of its effects on biological processes Cells may freeze and rupture below 0°C, while most proteins denature above 45°C Mammals and birds expend energy to regulate their internal temperature
31
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Water Water availability in habitats is another important factor in species distribution Desert organisms exhibit adaptations for water conservation
32
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Salinity Salt concentration affects water balance of organisms through osmosis Few terrestrial organisms are adapted to high- salinity habitats
33
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Sunlight Light intensity and quality affect photosynthesis Water absorbs light, thus in aquatic environments most photosynthesis occurs near the surface In deserts, high light levels increase temperature and can stress plants and animals
34
Fig. 52-9
35
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Rocks and Soil Many characteristics of soil limit distribution of plants and thus the animals that feed upon them: – Physical structure – pH – Mineral composition
36
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Climate Four major abiotic components of climate are temperature, water, sunlight, and wind The long-term prevailing weather conditions in an area constitute its climate Macroclimate consists of patterns on the global, regional, and local level Microclimate consists of very fine patterns, such as those encountered by the community of organisms underneath a fallen log
37
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Global Climate Patterns Global climate patterns are determined largely by solar energy and the planet’s movement in space Sunlight intensity plays a major part in determining the Earth’s climate patterns More heat and light per unit of surface area reach the tropics than the high latitudes
38
Fig. 52-10a Latitudinal Variation in Sunlight Intensity Low angle of incoming sunlight Sun directly overhead at equinoxes Low angle of incoming sunlight Atmosphere 90ºS (South Pole) 60ºS 30ºS 23.5ºS (Tropic of Capricorn) 0º (equator) 30ºN 23.5ºN (Tropic of Cancer) 60ºN 90ºN (North Pole) Seasonal Variation in Sunlight Intensity 60ºN 30ºN 30ºS 0º (equator) March equinox June solstice Constant tilt of 23.5º September equinox December solstice
39
Fig. 52-10b Low angle of incoming sunlight Sun directly overhead at equinoxes Low angle of incoming sunlight Atmosphere 90ºS (South Pole) 60ºS 30ºS 23.5ºS (Tropic of Capricorn) 0º (equator) 30ºN 60ºN 23.5ºN (Tropic of Cancer) 90ºN (North Pole)
40
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Seasonal variations of light and temperature increase steadily toward the poles
41
Fig. 52-10c March equinox 60ºN 30ºN 0º (equator) 30ºS June solstice Constant tilt of 23.5º September equinox December solstice
42
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Global air circulation and precipitation patterns play major roles in determining climate patterns Warm wet air flows from the tropics toward the poles
43
Fig. 52-10d Global Air Circulation and Precipitation Patterns 60ºN 30ºN 0º (equator) 30ºS 60ºS Global Wind Patterns Descending dry air absorbs moisture Ascending moist air releases moisture Descending dry air absorbs moisture Arid zone Tropics Arid zone 0º 66.5ºN (Arctic Circle) 60ºN 30ºN 0º (equator) 30ºS 60ºS 66.5ºS (Antarctic Circle) Westerlies Northeast trades Doldrums Southeast trades Westerlies 23.5º 30º 23.5º 30º
44
Fig. 52-10e Descending dry air absorbs moisture Descending dry air absorbs moisture Ascending moist air releases moisture Arid zone Arid zone Tropics 30º 23.5º 0º 23.5º 30º 60ºN 30ºN 0º (equator) 30ºS 60ºS
45
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Air flowing close to Earth’s surface creates predictable global wind patterns Cooling trade winds blow from east to west in the tropics; prevailing westerlies blow from west to east in the temperate zones
46
Fig. 52-10f 0º (equator) 30ºS 60ºS 66.5ºS (Antarctic Circle) 30ºN 66.5ºN (Arctic Circle) 60ºN Westerlies Northeast trades Doldrums Southeast trades Westerlies
47
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Regional, Local, and Seasonal Effects on Climate Proximity to bodies of water and topographic features contribute to local variations in climate Seasonal variation also influences climate
48
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Bodies of Water The Gulf Stream carries warm water from the equator to the North Atlantic Oceans and their currents and large lakes moderate the climate of nearby terrestrial environments
49
Fig. 52-11 Labrador current Gulf stream Equator Cold water Warm water
50
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings During the day, air rises over warm land and draws a cool breeze from the water across the land As the land cools at night, air rises over the warmer water and draws cooler air from land back over the water, which is replaced by warm air from offshore
51
Fig. 52-12 Warm air over land rises. 1 2 3 4 Air cools at high elevation. Cool air over water moves inland, replacing rising warm air over land. Cooler air sinks over water.
52
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Mountains Mountains have a significant effect on – The amount of sunlight reaching an area – Local temperature – Rainfall Rising air releases moisture on the windward side of a peak and creates a “rain shadow” as it absorbs moisture on the leeward side
53
Fig. 52-13 Wind direction Mountain range Leeward side of mountain Ocean
54
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Seasonality The angle of the sun leads to many seasonal changes in local environments Lakes are sensitive to seasonal temperature change and experience seasonal turnover
55
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Microclimate Microclimate is determined by fine-scale differences in the environment that affect light and wind patterns
56
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings Long-Term Climate Change Global climate change will profoundly affect the biosphere One way to predict future global climate change is to study previous changes As glaciers began retreating 16,000 years ago, tree distribution patterns changed As climate changes, species that have difficulty dispersing may have smaller ranges or could become extinct
57
Fig. 52-14 Current range Predicted range Overlap (a) 4.5ºC warming over next century (b) 6.5ºC warming over next century
58
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings You should now be able to: 1.Distinguish among the following types of ecology: organismal, population, community, ecosystem, and landscape 2.Explain how dispersal may contribute to a species’ distribution 3.Distinguish between the following pairs of terms: potential and actual range, biotic and abiotic factors, macroclimate and microclimate patterns
59
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 4.Explain how a body of water or mountain range might affect regional climatic conditions 5.Define the following terms: photic zone, aphotic zone, benthic zone, abyssal zone, thermal stratification, thermocline, seasonal turnover, climograph, disturbance 6.List and describe the characteristics of the major aquatic biomes
60
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings 7.List and describe the characteristics of the major terrestrial biomes 8.Compare the vertical layering of a forest and grassland
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.