Download presentation
Presentation is loading. Please wait.
Published byJudith Bridges Modified over 9 years ago
1
Heavy elements and reddening in Gamma Ray Bursts Sandra Savaglio Johns Hopkins University In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome Obs)
2
Heavy elements and reddening in Gamma Ray Bursts Sandra Savaglio Johns Hopkins University In collaboration with Mike Fall (STScI) & Fabrizio Fiore (Rome Obs) Optical spectra of GRB afterglows GRB–DLAs vs. QSO–DLAs Heavy elements and dust Outline
3
Heavy elements and reddening in Gamma Ray Bursts Acknowledgements Daniela Calzetti – STScI Fiona Harrison – CalTech Tim Heckman – JHU Julian Krolik – JHU Nicola Masetti – CNR, Bologna Eliana Palazzi – CNR Bologna Nino Panagia – STScI James Rhoads – STScI Ken Sembach – STScI
4
Introduction GRBGRB X-ray positionErrorInstrumentX-ray AfterglowOptical TransientRadio Afterglowz 02040513 h 58 m 10 s -31° 23'15'*5'Uly/MO/SAX yy0.69 01121111 h 15 m 16 s -21° 56'1'SAX/WFCyy 2.14 01112111 h 34 m 25 s -76° 02'2'SAX/WFCyyy0.36 01092122 h 55 m 35 s +40° 56'20*15'HE/Uly/SAX y 0.45 01022214 h 52 m 12 s +43° 01'2.5'SAX/WFCyyy1.477 00092617 h 04 m 15 s +51° 46'3'*10'Uly/Ko/NEyyy2.066 00041812 h 25 m 21 s +20° 05'4'*8'Uly/KO/NE yy1.118 000301C16 h 20 m 22 s +29° 25'6'*8'ASM/Uly yy2.03 00013106 h 13 m 33 s -51° 56'3.5'*16'Uly/KO/NE y 4.5 99120816 h 33 m 55 s +46° 26'14*1'Uly/KO/NE yy0.706 99071222 h 31 m 50 s -73° 24'2'SAX/WFC yn0.434 99070505 h 09 m 32 s -72° 09'6'SAX/WFCyyn0.86 99051013 h 38 m 06 s -80° 30'3'SAX/WFCyyy1.619 99050611 h 54 m 41 s -26° 45'7'BAT/PCAy y1.3 99012315 h 25 m 29 s +44° 45'2'SAX/WFCyyy1.60 98070323 h 59 m 07 s +08° 35.6'4'RXTE/ASMyyy0.966 98061310 h 17 m 46 s +71° 29.9'4'SAX/WFCyyn1.096 98042519 h 34 m 54 s -52° 49.9'8'SAX/WFCySNy0.0085 97121411 h 56 m 30 s +65° 12.0'4'SAX/WFCyyn3.42 97082818 h 08 m 29 s +59° 18.0'2.5'*1'RXTE/ASMyny0.9578 97050806 h 53 m 28 s +79° 17.4'3'SAX/WFCyyy0.835 97022805 h 01 m 57 s +11° 46.4'3'SAX/WFCyyn0.695 This list URL: http://www.aip.de/ ˜ jcg/grbgen.html
5
Introduction GRBs vs. QSOs redshift distribution
6
Introduction 0.5 days m R =20.32 1.5 days m R =21.11 0.7 days m R =20.65 GRB 990712 z GRB =1.475 (Vreeswijk et al., 2001)
7
Introduction This list URL: http://www.aip.de/ ˜ jcg/grbgen.html GRBGRB X-ray positionErrorInstrumentX-ray AfterglowOptical TransientRadio Afterglowz 02040513 h 58 m 10 s -31° 23'15'*5'Uly/MO/SAX yy0.69 01121111 h 15 m 16 s -21° 56'1'SAX/WFCyy 2.14 01112111 h 34 m 25 s -76° 02'2'SAX/WFCyyy0.36 01092122 h 55 m 35 s +40° 56'20*15'HE/Uly/SAX y 0.45 01022214 h 52 m 12 s +43° 01'2.5'SAX/WFCyyy1.477 00092617 h 04 m 15 s +51° 46'3'*10'Uly/Ko/NEyyy2.066 00041812 h 25 m 21 s +20° 05'4'*8'Uly/KO/NE yy1.118 000301C16 h 20 m 22 s +29° 25'6'*8'ASM/Uly yy2.03 00013106 h 13 m 33 s -51° 56'3.5'*16'Uly/KO/NE y 4.5 99120816 h 33 m 55 s +46° 26'14*1'Uly/KO/NE yy0.706 99071222 h 31 m 50 s -73° 24'2'SAX/WFC yn0.434 99070505 h 09 m 32 s -72° 09'6'SAX/WFCyyn0.86 99051013 h 38 m 06 s -80° 30'3'SAX/WFCyyy1.619 99050611 h 54 m 41 s -26° 45'7'BAT/PCAy y1.3 99012315 h 25 m 29 s +44° 45'2'SAX/WFCyyy1.60 98070323 h 59 m 07 s +08° 35.6'4'RXTE/ASMyyy0.966 98061310 h 17 m 46 s +71° 29.9'4'SAX/WFCyyn1.096 98042519 h 34 m 54 s -52° 49.9'8'SAX/WFCySNy0.0085 97121411 h 56 m 30 s +65° 12.0'4'SAX/WFCyyn3.42 97082818 h 08 m 29 s +59° 18.0'2.5'*1'RXTE/ASMyny0.9578 97050806 h 53 m 28 s +79° 17.4'3'SAX/WFCyyy0.835 97022805 h 01 m 57 s +11° 46.4'3'SAX/WFCyyn0.695
8
Introduction RedshiftFWHM (Ǻ)References GRB 990123 1.600411.6 Kulkarni et al., 1999 GRB 990510 1.61930 Vreeswijk, et al., 2001 GRB 000926 2.0381.12 Castro et al., 2001 GRB 010222 1.4756 / 4.8 / 3.3–5.8 Jha et al., 2001 Masetti et al 2001 Salamanca et al., 2001
9
GRB010222 z GRB = 1.475 m V 20.2 Introduction (Masetti et al., 2001)
10
Introduction GRB 000926 z GRB = 2.0379 (Castro et al., 2001)
11
Introduction GRB 000926 z GRB = 2.0379 N HI 2 10 21 cm –2 (Fynbo et al., 2001)
12
Introduction Ly N HI =2.3x10²º cmˉ ² 5” Z QSO = 1.41 Wavelength (Å) QSO Damped Lyman Alpha (DLA) systems QSO EX0302-223 z DLA = 1.01 m V 16.4 (Le Brun et al., 1998)
13
[X/H] = log (N Xi /N HI )– log (X/H) (Pettini et al., 2000) Ion log N [X/H] HI20.67±0.03 …. ZnII12.33±0.11– 0.99±0.11 SiII15.45±0.11– 0.77±0.11 CrII13.49±0.04– 0.89±0.05 FeII15.17±0.04– 1.01±0.05 MnII12.91±0.04– 1.15±0.05 Introduction
14
Metallicity redshift evolution QSO DLAs (Savaglio, 2000)
15
QSO–DLA 0454+39 z = 0.8591 FWHM = 7 km s –1 GRB–DLA 010222 z GRB = 1.475 FWHM = 200 – 400 km s –1 velocity (km s –1 ) GRB–DLAs and QSO–DLAs
16
1.4 minutes 14.4 minutes 2.4 hours (Fruchter et al., 1999) GRB 990123 z GRB = 1.6004 GRB–DLAs and QSO–DLAs
17
760 km s –1 (Castro et al., 2001) GRB000926 z GRB = 2.0379 Keck/ESI FWHM 80 km s –1 GRB–DLAs and QSO–DLAs
18
Heavy element column densities in GRB–DLAs Equivalent Widths of absorption lines
19
Heavy element column densities in GRB–DLAs Curve of growth (Spitzer, 1978) Linear part: log W r / = log (N f ) – 4.053
20
Heavy element column densities in GRB–DLAs
21
Curve of growth (Spitzer, 1978)
22
Heavy element column densities in GRB–DLAs
23
Comparison with QSO–DLAs
24
Heavy element column densities in GRB–DLAs Comparison with QSO–DLAs
25
Heavy element abundances in GRB–DLAs Relative abundances and comparison with QSO–DLAs
26
Heavy element abundances in GRB–DLAs Relative abundances and comparison with QSO–DLAs
27
Heavy element abundances in GRB–DLAs Relative abundances and comparison with QSO–DLAs
28
Heavy element abundances in GRB–DLAs Relative abundances and comparison with QSO–DLAs
29
Dust depletion correction Heavy element abundances in the Galactic ISM (Savage & Sembach 1996)
30
Dust depletion correction (Savaglio 2000)
31
Dust depletion correction GRB 000926
32
Dust depletion correction GRB 010222 GRB 990123
33
Dust extinction Optical extinction in solar neighborhood
34
Dust extinction Optical extinction in solar neighborhood
35
Dust extinction A V GRB 990123 1.1 GRB 000926 0.9 GRB 010222 0.6
36
Dust extinction GRB 000926 z GRB = 2.0379 (Fynbo et al., 2001) U K A V =0.27 0.12 A V =0.18 0.06
37
Dust extinction Grey dust extinction in Active Nuclei (Maiolino, Marconi & Oliva, 2001)
38
Dust extinction (Fruchter, Krolik & Rohads, 2001) Large dust grains might be destroyed first
39
Absorption lines in 3 GRB –DLAs indicate column densities of metals are larger than in QSO–DLAs [Fe/Zn] indicates high dust depletion Low observed reddening in GRBs can be explained if grey extinction is assumed High extinction might party explain low fraction (30 – 35 %) of optical GRB afterglow detections This talk URL: http://www.pha.jhu/˜savaglio/grb/grb.ppt Conclusions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.