Download presentation
Presentation is loading. Please wait.
Published byAriel Nicholson Modified over 9 years ago
1
© Modeling Obesity Using Abductive Networks Abdel-Aal, RE; Mangoud, AM ACADEMIC PRESS INC, COMPUTERS AND BIOMEDICAL RESEARCH; pp: 451-471; Vol: 30 King Fahd University of Petroleum & Minerals http://www.kfupm.edu.sa Summary This paper investigates the use of abductive-network machine learning for modeling and predicting outcome parameters in terms of input parameters in medical survey data. Here we consider modeling obesity as represented by the waist-to-hip ratio (WHR) risk factor to investigate the influence of various parameters. The same approach would be useful in predicting values of clinical parameters that are difficult or expensive to measure from others that are more readily available. The AIM abductive network machine learning tool was used to model the WHR from 13 other health parameters. Survey data were collected for a randomly selected sample of 1100 persons aged 20 yr and over attending nine primary health care centers at Al-Khobar, Saudi Arabia. Models were synthesized by training on a randomly selected set of 800 cases, using both continuous and categorical representations of the parameters, and evaluated by predicting the WHR value for the remaining 300 cases. Models for WHR as a continuous variable predict the actual values within an error of 7.5% at the 90% confidence limits. Categorical models predict the correct logical value of WHR with an error in only 2 of the 300 evaluation cases. Analytical relationships derived from simple categorical models explain global observations on the total survey population to an accuracy as high as 99%. Simple continuous models represented as analytical functions highlight global relationships and trends. Results confirm the strong correlation between WHR and diastolic blood pressure, cholesterol level, and family history of obesity. Compared to other statistical and neural network approaches, AIM abductive networks provide faster and more automated model synthesis. A review is given of other areas where the proposed modeling approach can be useful in clinical practice. (C) 1997 Academic Press. Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa
2
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. 29. 30. 31. 32. 33. 34. 35. 36. 37. 38. 39. 40. 41. 42. 43. © References: *ABT CORP, 1990, AIM US MAN ABDELAAL RE, 1994, ENERGY, V19, P739 ABDELAAL RE, 1995, WEATHER FORECAST, V10, P310 ABDELHALIM RE, 1993, SCAND J UROL NEPHROL, V27, P155 ALLAIN CC, 1974, CLIN CHEM, V20, P470 BARRON AR, 1984, SELF ORG METHODS MOD BARRON RL, 1984, SELF ORG METHODS MOD BAUMGARTNER RN, 1987, AM J EPIDEMIOL, V126, P614 BRAY GA, 1988, W J MED, V149, P429 BREIMAN L, 1984, CLASSIFICATION REGRE BUCOLO G, 1973, CLIN CHEM, V19, P476 CHARALAMBOUS C, 1992, IEE PROC-G, V139, P301 DANIEL WW, 1974, BIOSTATISTICS FDN AN DENTONKELAAR I, 1990, NED TIJDSCHR GENEESK, V134, P1900 DOYLE HR, 1995, METHOD INFORM MED, V34, P253 DUCIMETIERE P, 1986, INT J OBESITY, V10, P229 DUDA R, 1973, PATTERN RECOGNITION FARLOW SJ, 1984, SELF ORG METHODS MOD FOLSOM AR, 1990, AM J EPIDEMIOL, V131, P794 HAFFNER SM, 1987, DIABETES, V36, P43 HARTZ AJ, 1992, AM J CARDIOL, V70, P179 IKEDA S, 1984, SELF ORG METHODS MOD IVAKHNENKO AG, 1971, IEEE T SYST MAN CYB, V1, P364 KAPLAN NM, 1989, ARCH INTERN MED, V149, P1514 KENNEDY RL, 1990, CLIN SCI, V78, P24 KEYS A, 1972, J CHRON DIS, V25, P329 KISSEBAH AH, 1982, J CLIN ENDOCR METAB, V54, P254 KNERR S, 1990, NEUROCOMPUTING ALGOR KROTKIEWSKI M, 1983, J CLIN INVEST, V72, P1150 LAPIDUS L, 1984, BRIT MED J, V289, P1261 LAPIDUS L, 1988, INT J OBESITY, V12, P361 LAPUERTA P, 1995, COMPUT BIOMED RES, V28, P38 LAWS A, 1990, AM J PUBLIC HEALTH, V80, P1358 LOWELL WE, 1994, J AM MED INFORM ASSN, V1, P459 MALONE JM, 1984, SELF ORG METHODS MOD MARSHAL SJ, P 2 INT C ART NEUR N, P200 MOENS HJB, 1991, METHOD INFORM MED, V30, P187 MONTGOMERY DC, 1985, INTRO LINEAR REGRESS MONTGOMERY GJ, P SPIE APPL ART NEUR, P56 MYKKANEN L, 1993, DIABETOLOGIA, V36, P553 OHLSON LO, 1985, DIABETES, V34, P1055 OWENS A, P INT C NEUR NETW WA, P381 QUINLAN JR, 1987, INT J MAN MACH STUD, V27, P221 Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa
3
44. 45. 46. 47. 48. 49. 50. 51. 52. 53. 54. 55. © REVICKI DA, 1986, AM J PUBLIC HEALTH, V76, P992 RUMELHART D, 1986, PARALLEL DISTRIBUTED SCOTT DE, 1984, SELF ORG METHODS MOD SOLER JT, 1988, J CLIN EPIDEMIOL, V41, P1075 SZOLOVITS P, 1978, ARTIF INTELL, V11, P115 VANSANT G, 1988, INT J OBESITY, V12, P133 WADDEN TA, 1988, AM J CLIN NUTR, V47, P229 WARNICK GR, 1978, J LIPID RES, V19, P65 WEISS SM, 1991, COMPUTER SYSTEMS LEA WOOLERY LK, 1994, J AM MED INFORM ASSN, V1, P439 WU YZ, 1993, RADIOLOGY, V187, P81 ZHU K, P 2 INT C ART NEUR N, P205 For pre-prints please write to: radwan@dpc.kfupm.edu.sa Copyright: King Fahd University of Petroleum & Minerals; http://www.kfupm.edu.sa
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.