Download presentation
Presentation is loading. Please wait.
Published byJeremy Knight Modified over 9 years ago
1
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy
2
ultraclean semiconducting nanotubes Bockrath group, Nature Phys. 2008McEuen group, Nature 2008 gate-defined quantum dots shallow confinement potentials (approx. parabolic)
3
ultraclean semiconducting nanotubes McEuen group, Nature 2008 chemical potential (N) Bockrath group, Nature Phys. 2008 chemical potential (N) 0 8 B (T) 1h 3h 5h B (T) 1e 2e 3e
4
ultraclean semiconducting nanotubes Bockrath group, Nature Phys. 2008McEuen group, Nature 2008 chemical potential (N) 0 8 B (T) 1h 3h 5h B (T) 1e 2e 3e independent from B
5
ultraclean semiconducting nanotubes Bockrath group, Nature Phys. 2008McEuen group, Nature 2008 chemical potential (N) 0 8 B (T) 1h 3h 5h B (T) 1e 2e 3e spin added electron
6
ultraclean semiconducting nanotubes Bockrath group, Nature Phys. 2008McEuen group, Nature 2008 chemical potential (N) 0 8 B (T) 1h 3h 5h B (T) 1e 2e 3e isospin added el. (angular momentum)
7
ultraclean semiconducting nanotubes Bockrath group, Nature Phys. 2008McEuen group, Nature 2008 chemical potential (N) 0 8 B (T) 1h 3h 5h B (T) 1e 2e 3e ground state spin & isospin polarized Wigner molecule? single-particle + spin-orbit
8
motivation Coulomb interaction vs single-particle physics role of interaction? exps at Harvard and Delft on coherent spin manipulation outlook (I) similar issues for graphene quantum dots similar theoretical approach (see next slide)
9
Hamiltonian exact diagonalisation ground & excited states many-body term: Ohno potential, inter- and intra-valley channels (including short range terms) compute the wavefunction as a superposition of Slater determinants Rontani et al., J. Chem. Phys. 124, 124102 (2006) single-particle term: mass + isospin + 1D harmonic confinement + B + spin-orbit coupling compute (N), n(x), g(x),… envelope function approximation Luttinger and Kohn 1955, Ando 2005
10
experimental evidence split 4-fold degenerate spin-orbitals
11
non-interacting physics? two-electron ground state: one Slater determinant no correlation chemical potential the simplest interpretation
12
theory vs experiment theory PRB 80, 041404(R) (2009)McEuen group 2008 B (T) dielectric constant fitting parameter
13
strongly correlated wave functions A & B states: strongly correlated same orbital wave functions differ in isospin only A. Secchi and M.R., PRB 80, 041404(R) (2009) isospin = valley population
14
spectrum affected by interaction N = 2 N = 1 A. Secchi & M.R., PRB 80, 041404(R) (2009) interaction strength SO
15
crystallization criterion A. Secchi & M.R., PRB 82, 035417 (2010) Bockrath group, Nature Phys. 2008 chemical potential (N) 0 8 B (T) 1h 3h 5h
16
crystallization criterion A. Secchi & M.R., PRB 82, 035417 (2010) a = WM b = particle-in-a-box a b
17
conclusions Wigner molecules form in realistic samples outlook (II) quantum devices (localization + spin-orbit coupling + electric control) scanning tunneling spectroscopy www.nanoscience.unimore.it/max.html www.nano.cnr.it nanotube quantum dots strongly correlated graphene quantum dots few-body physics of cold Fermi atoms M. Rontani et al., PRL 102, 060401 (2009)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.