Presentation is loading. Please wait.

Presentation is loading. Please wait.

Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona

Similar presentations


Presentation on theme: "Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona"— Presentation transcript:

1 Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona
UNIVERSITAT POLITÈCNICA DE CATALUNYA Design & analysis of a 2.4 GHz CMOS Quadrature VCO using AMSS35D4 technology RFSoC – Final Project Master in Electronics Engineering Josep Maria Margarit Taulé Advisor: Xavier Aragonès Cervera

2 1 Introduction 2 Design procedure 3 Results 4 Conclusion

3 1 Introduction 2 Design procedure 3 Results 4 Conclusion

4 Introduction Design procedure Results Conclusion
Complete design procedure of a 2.4 GHz LC CMOS quadrature VCO. Process technology: AMSS35D4 (SiGe 0.35 m, 4-metal, thick metal available). Tasks: Initial rough calculations Accurate cadence rf-modelled simulation and tuning Result analysis and conclusions

5 1 Introduction 2 Design procedure 3 Results 4 Conclusion

6 Specs Spec Units Value Vdd V 3.3 Power consumption mW <25
Introduction Design procedure Results Conclusion Specs Calculations Single VCO QVCO Specs Spec Units Value Vdd V 3.3 Power consumption mW <25 Output load k,pF f0 GHz 2.4 Tuning range MHz 100 Harmonic distortion dBc <-40 S.E. output amp. 1 Vpp ± 15% Phase noise <-100 Phase error <1

7 Introduction Design procedure Results Conclusion
Specs Calculations Single VCO QVCO Handy calculations First order, simplified expressions from subject topics Automatic calculation procedure Excel worksheet

8 Single VCO (L selection)
Introduction Design procedure Results Conclusion Specs Calculations Single VCO QVCO Single VCO (L selection) Thick metal (higher Q) Large L/Q desired: less power consumption

9 Single VCO (varactor selection)
Introduction Design procedure Results Conclusion Specs Calculations Single VCO QVCO Single VCO (varactor selection) Minimum varactors Higher QT

10 Single VCO (Itail calculation)
Introduction Design procedure Results Conclusion Specs Calculations Single VCO QVCO Single VCO (Itail calculation) Losses estimation: Itail must be:

11 Single VCO (nmos W-L choice)
Introduction Design procedure Results Conclusion Specs Calculations Single VCO QVCO Single VCO (nmos W-L choice) From previous Itail calculation (b=2): But... Transistor losses! gds, gmb L=1 µm Further considerations: Adjustments Iterative tran simulations

12 Single VCO Itail =7 mA gm=13 mS W=75 µm L=1 µm
Introduction Design procedure Results Conclusion Specs Calculations Single VCO QVCO Single VCO Itail =7 mA gm=13 mS W=75 µm L=1 µm

13 QVCO Introduction Design procedure Results Conclusion
Specs Calculations Single VCO QVCO QVCO

14 QVCO (coupling definition)
Introduction Design procedure Results Conclusion Specs Calculations Single VCO QVCO QVCO (coupling definition) Coupling factor: Trade-off: α Phase noise , but phase error !! α =1/3

15 QVCO (center frequency tuning)
Introduction Design procedure Results Conclusion Specs Calculations Single VCO QVCO QVCO (center frequency tuning) Pss simulations From an initial frequency (f0i): Cpoly resizing ~350 fF

16 1 Introduction 2 Design procedure 3 Results 4 Conclusion

17 Results (I-Q transient analysis)
Introduction Design procedure Results Conclusion I-Q tran F/V Harm./Ph. noise Ph. error Summary Results (I-Q transient analysis) Vtank ~ 900 mV Tinit ~ 1.5 µs

18 Results (f/V pss analysis)
Introduction Design procedure Results Conclusion I-Q tran F/V Harm./Ph. noise Ph. error Summary Results (f/V pss analysis) ftun ~ GHz KVCO ~ 268 MHz/V

19 Results (harmonic/phase noise analysis)
Introduction Design procedure Results Conclusion I-Q tran F/V Harm./Ph. noise Ph. error Summary Results (harmonic/phase noise analysis) Max. Harm. level ~ dBc Phase noise (600 kHz) ~ -118 dBc

20 Results (phase error) Phase error:
Introduction Design procedure Results Conclusion I-Q tran F/V Harm./Ph. noise Ph. error Summary Results (phase error) Phase error:

21 Results (summary) QVCO final parameters QVCO final results
Introduction Design procedure Results Conclusion I-Q tran F/V Harm./Ph. noise Ph. error Summary Results (summary) QVCO final parameters QVCO final results

22 1 Introduction 2 Design procedure 3 Results 4 Conclusion

23 Introduction Design procedure Results Conclusion
Complete design procedure of a 2.4 GHz LC CMOS quadrature VCO (SiGe 0.35 m, 4-metal, thick metal tech process) Tech. main drawback: low QL Itail Design key points: L selection (highest L-Q at main frequency) But... Ctotal>Cparasitics!! gds to be considered! Coupling factor trade-off (Phase noise vs. Phase error)

24 Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona
UNIVERSITAT POLITÈCNICA DE CATALUNYA Design & analysis of a 2.4 GHz CMOS Quadrature VCO using AMSS35D4 technology RFSoC – Final Project Master in Electronics Engineering Josep Maria Margarit Taulé Advisor: Xavier Aragonès Cervera 24


Download ppt "Escola Tècnica Superior d’Enginyeria de Telecomunicació de Barcelona"

Similar presentations


Ads by Google