Download presentation
Presentation is loading. Please wait.
Published byRosanna Johnston Modified over 9 years ago
1
Dynamical Fluctuations & Entropy Production Principles Karel Netočný Institute of Physics AS CR Seminar, 6 March 2007
2
To be discussed Min- and Max-entropy production principles: various examples From variational principles to fluctuation laws: equilibrium case Static versus dynamical fluctuations Onsager-Machlup macroscopic fluctuation theory Stochastic models of nonequilibrium Conclusions, open problems, outlook,... (In collaboration with C. Maes, K. U. Leuven)
3
Motivation: Modeling Earth climate [Ozawa et al, Rev. Geoph. 41(4), 1018 (2003)]
4
Linear electrical networks explaining MinEP/MaxEP principles U 22 Kirchhoff’s loop law: Entropy production rate: MinEP principle: Stationary values of voltages minimize the entropy production rate Not valid under inhomogeneous temperature! X k U j k = X k E j k ¾ ( U ) = ¯ Q ( U ) = ¯ X j ; k U 2 j k R j k
5
Linear electrical networks explaining MinEP/MaxEP principles U 22 Kirchhoff’s current law: Entropy production rate: Work done by sources: (Constrained) MaxEP principle: Stationary values of currents maximize the entropy production under constraint X j I j k = 0 ¾ ( I ) = ¯ Q ( I ) = ¯ X j ; k R j k I 2 j k Q ( I ) = W ( I ) W ( I ) = X j k E j k I j k
6
Linear electrical networks summary of MinEP/MaxEP principles Current law + Loop law MaxEP principle + Current law Loop law + MinEP principle Generalized variational principle I U U, I
7
From principles to fluctuation laws Questions and ideas How to go beyond approximate and ad hoc thermodynamical principles? Inspiration from thermostatics: Equilibrium variational principles are intimately related to structure of equilibrium fluctuations Is there a nonequilibrium analogy of thermodynamical fluctuation theory?
8
From principles to fluctuation laws Equilibrium fluctuations H ( x ) = N e M ( x ) = N m eq ( e ) H ( x ) = N e Typical value P ( M ( x ) = N m ) = e N [ s ( e ; m ) ¡ s eq ( e )] Probability of fluctuation H h ( x ) = H ( x ) ¡ h M ( x ) = N [ e ¡ h m ] The fluctuation made typical! s ( e ; m ) = s h eq ( e ¡ h m ) add field
9
From principles to fluctuation laws Equilibrium fluctuations Fluctuation functional Variational functional Thermodynamic potential Entropy (Generalized) free energy
10
From principles to fluctuation laws Static versus dynamical fluctuations Empirical ergodic average: Ergodic theorem: Dynamical fluctuations: Interpolating between static and dynamical fluctuations: H ( x ) = N e P ( ¹ m T = m ) = e ¡ TI ( m ) P ¡ 1 N P N k = 1 m ( x ¿ k ) = m ¢ = e ¡ NI ( ¿ ) ( m ) S t a t i c:¿ ! 1 I ( 1 ) ( m ) = s ( e ) ¡ s ( e ; m ) D ynam i c:¿ ! 0 ¹ m T ! m eq ( e ) ; T ! 1 ¹ m T = 1 T R T 0 m ( x t ) d t
11
Effective model of macrofluctuations Onsager-Machlup theory Dynamics: Equilibrium: Path distribution: R d m t d t = ¡ sm t + q 2 R N w t P ( m 1 = m ) / e ¡ 1 2 N sm 2 S ( m ) ¡ S ( 0 ) P ( ! ) = exp £ ¡ N 4 R T 0 R 2 ¡ d m t d t + s R m t ¢ 2 ¤
12
Effective model of macrofluctuations Onsager-Machlup theory Dynamics: Path distribution: Dynamical fluctuations: (Typical immediate) entropy production rate: P ( ! ) = exp £ ¡ N 4 R T 0 R 2 ¡ d m t d t + s R m t ¢ 2 ¤ ¾ ( m ) = d S ( m t ) d t = N s 2 2 R m 2 I ( m ) = 1 4 ¾ ( m ) P ( ¹ m T = m ) = P ( m t = m; 0 · t · T ) = exp £ ¡ T N s 2 8 R m 2 ¤ R d m t d t = ¡ sm t + q 2 R N » t
13
Towards general theory EquilibriumNonequilibrium Closed Hamiltonian dynamics Open Stochastic dynamics Mesoscopic Macroscopic
14
Linear electrical networks revisited Dynamical fluctuations Fluctuating dynamics: Johnson-Nyquist noise: Empirical ergodic average: Dynamical fluctuation law: R 1 R 2 E C E f 1 E f 2 E f = q 2 R ¯ » white noise U total dissipated heat E = U + R 2 I + E f 2 I = C _ U + U ¡ E f 1 R 1 ¹ U T = 1 T R T 0 U t d t ¡ 1 T l og P ( ¹ U T = U ) = 1 4 ¯ 1 ¯ 2 ( R 1 + R 2 ) ¯ 1 R 1 + ¯ 2 R 2 h U 2 R 1 + ( E ¡ U ) 2 R 2 ¡ E 2 R 1 + R 2 i
15
Stochastic models of nonequilibrium jump Markov processes Local detailed balance: Global detailed balance generally broken: Markov dynamics: l og k ( x ; y ) k ( y ; x ) = ¢ s ( x ; y ) = ¡ ¢ s ( y ; x ) entropy change in the environment breaking term ¢ s ( x ; y ) = s ( y ) ¡ s ( x ) + ² ( x ; y ) x y k ( x ; y ) k ( y ; x ) d ½ t ( x ) d t = X y £ ½ t ( y ) k ( y ; x ) ¡ ½ t ( x ) k ( x ; y ) ¤
16
Stochastic models of nonequilibrium jump Markov processes Entropy of the system: Entropy fluxes: Mean entropy production rate: S ( ½ ) = ¡ P x ½ ( x ) l og½ ( x ) Warning: Only for time-reversal invariant observables! x y k ( x ; y ) k ( y ; x ) ¾ ( ½ ) = d S ( ½ t ) d t + 1 2 X ( x ; y ) j ½ ( x ; y ) ¢ s ( x ; y ) = X x ; y ½ ( x ) k ( x ; y ) ½ ( x ) k ( x ; y ) ½ ( y ) k ( y ; x ) j ½ ( x ; y ) = ½ ( x ) k ( x ; y ) ¡ ½ ( y ) k ( y ; x ) |{z} zeroa t d e t a i l e db a l ance
17
Stochastic models of nonequilibrium jump Markov processes (“Microscopic”) MinEP principle: Can we again recognize entropy production as a fluctuation functional? x y k ( x ; y ) k ( y ; x ) In the first order in the expansion of the breaking term : ¾ ( ½ ) = m i n, ½ = ½ s
18
Stochastic models of nonequilibrium jump Markov processes Empirical occupation times: Ergodic theorem: Fluctuation law for occupation times? Note: ¹ p T ( x ) ! ½ s ( x ) ; T ! 1 P ( ¹ p T = ½ ) = e ¡ TI ( ½ ) ¹ p T ( x ) = 1 T R T 0 Â ( ! t = x ) d t x y k ( x ; y ) k ( y ; x ) I ( ½ s ) = 0 Natural variational functional
19
Stochastic models of nonequilibrium jump Markov processes Idea: Make the empirical distribution typical by modifying dynamics: The “field” a(x) is such that p(x) is stationary distribution for the modified dynamics: Comparing both processes yields the fluctuation law: P y 6 = x £ p ( x ) k a ( y ; x ) ¡ p ( y ) k a ( x ; y ) ¤ = 0 k ( x ; y ) ¡ ! k a ( x ; y ) = k ( x ; y ) e a ( y ) ¡ a ( x ) I ( p ) = P y 6 = x £ k ( x ; y ) ¡ k a ( x ; y ) ¤ difference of escape rates
20
Stochastic models of nonequilibrium fluctuations versus MinEP principle General observation: In the first order approximation around detailed balance The variational functional is recognized as an approximate fluctuation functional A consequence: A natural way how to go beyond MinEP principle is to study various fluctuation laws I ( ½ ) = 1 4 £ ¾ ( ½ ) ¡ ¾ ( ½ s ) ¤ + o ( ² 2 )
21
General conclusions open problems Similarly, MaxEP principle is obtained from the fluctuation law of empirical current Is there a natural computational scheme for the fluctuation functional far from equilibrium (e.g. for ratchets)? Natural mathematical formalism: the large deviation and Donsker-Varadhan theory Might the dynamical fluctuation theory provide a natural nonequilibrium thermodynamical formalism far from equilibrium?
22
Outlook from fluctuations to nonequilibrium thermodynamics? Fluctuation functional Variational functional Nonequilibrium potential “Corrected” entropy production ? ?
23
References C. Maes, K. N. (2006). math-ph/0612063. S. Bruers, C. Maes, K. N. (2007). cond-mat/0701035. C. Maes, K. N. (2006). cond-mat/0612525. M. D. Donsker and S. R. Varadhan. Comm. Pure Appl. Math., 28:1–47 (1975). M. J. Klein and P. H. E. Meijer. Phys. Rev., 96:250-255 (1954). I. Prigogine. Introduction to Non-Equilibrium Thermodynamics. Wiley- Interscience, New York (1962). G. Eyink, J. L. Lebowitz, and H. Spohn. In: Chaos, Soviet-American Perspectives in Nonlinear Science, Ed. D. Campbell, p. 367–391 (1990). E. T. Jaynes. Ann. Rev. Phys. Chem., 31:579–601 (1980). R. Landauer. Phys. Rev. A, 12:636–638 (1975)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.