Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter 4 Preview Multiple Choice Short Answer Extended Response

Similar presentations


Presentation on theme: "Chapter 4 Preview Multiple Choice Short Answer Extended Response"— Presentation transcript:

1 Chapter 4 Preview Multiple Choice Short Answer Extended Response
Standardized Test Preparation Chapter 4 Preview Multiple Choice Short Answer Extended Response

2 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 1. Which of the following relationships is true? A. Higher-energy light has a higher frequency than lower-energy light does. B. Higher-energy light has a longer wavelength than lower-energy light does. C. Higher-energy light travels at a faster speed than lower-energy light does. D. Higher-frequency light travels at a slower speed than lower-energy light does.

3 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 1. Which of the following relationships is true? A. Higher-energy light has a higher frequency than lower-energy light does. B. Higher-energy light has a longer wavelength than lower-energy light does. C. Higher-energy light travels at a faster speed than lower-energy light does. D. Higher-frequency light travels at a slower speed than lower-energy light does.

4 Chapter 4 Multiple Choice 2. The energy of a photon is greatest for
Standardized Test Preparation Chapter 4 Multiple Choice 2. The energy of a photon is greatest for A. visible light. B. ultraviolet light. C. infrared light. D. X-ray radiation.

5 Chapter 4 Multiple Choice 2. The energy of a photon is greatest for
Standardized Test Preparation Chapter 4 Multiple Choice 2. The energy of a photon is greatest for A. visible light. B. ultraviolet light. C. infrared light. D. X-ray radiation.

6 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 3. What is the wavelength of radio waves that have a frequency of 88.5 MHz? A. 3.4 m B. 8.9 nm C m D. 300 nm

7 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 3. What is the wavelength of radio waves that have a frequency of 88.5 MHz? A. 3.4 m B. 8.9 nm C m D. 300 nm

8 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 4. Which transition in an excited hydrogen atom will emit the longest wavelength of light? A. E5 to E1 B. E4 to E1 C. E3 to E1 D. E2 to E1

9 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 4. Which transition in an excited hydrogen atom will emit the longest wavelength of light? A. E5 to E1 B. E4 to E1 C. E3 to E1 D. E2 to E1

10 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 5. Which of the following quantum numbers is often designated by the letters s, p, d, and f instead of by numbers? A. n B. l C. m D. s

11 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 5. Which of the following quantum numbers is often designated by the letters s, p, d, and f instead of by numbers? A. n B. l C. m D. s

12 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 6. Which quantum number is related to the shape of an orbital? A. n B. l C. m D. s

13 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 6. Which quantum number is related to the shape of an orbital? A. n B. l C. m D. s

14 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 7. What is the maximum number of unpaired electrons that can be placed in a 3p sublevel? A. 1 B. 2 C. 3 D. 4

15 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 7. What is the maximum number of unpaired electrons that can be placed in a 3p sublevel? A. 1 B. 2 C. 3 D. 4

16 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 8. What is the maximum number of electrons that can occupy a 3s orbital? A. 1 B. 2 C. 6 D. 10

17 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 8. What is the maximum number of electrons that can occupy a 3s orbital? A. 1 B. 2 C. 6 D. 10

18 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 9. Which element has the noble-gas notation [Kr]5s24d2? A. Se B. Sr C. Zr D. Mo

19 Chapter 4 Multiple Choice
Standardized Test Preparation Chapter 4 Multiple Choice 9. Which element has the noble-gas notation [Kr]5s24d2? A. Se B. Sr C. Zr D. Mo

20 Standardized Test Preparation
Chapter 4 Short Answer 10. When a calcium salt is heated in a flame, a photon of light with an energy of 3.2 × 10−19 J is emitted. On the basis of this fact and the table below, what color would be expected for the calcium flame? Frequency, s–1 7.1 × 1014 6.4 × 1014 5.7 × 1014 Wavelength, nm 422 469 526 Color violet blue green 5.2 × 1014 4.8 × 1014 4.3 × 1014 577 625 698 yellow orange red

21 Standardized Test Preparation
Chapter 4 Short Answer 10. When a calcium salt is heated in a flame, a photon of light with an energy of 3.2 × 10−19 J is emitted. What color would be expected for the calcium flame? Answer: The color will be orange. Converting energy into frequency gives 4.8 × 1014, which corresponds to the frequency of orange light.

22 Standardized Test Preparation
Chapter 4 Short Answer 11. The electron configuration of sulfur is 1s22s22p63s23p4. Write the orbital notation for sulfur.

23 Standardized Test Preparation
Chapter 4 Short Answer 11. The electron configuration of sulfur is 1s22s22p63s23p4. Write the orbital notation for sulfur. Answer: 1s 2s 3s 2p 3p

24 Chapter 4 Extended Response
Standardized Test Preparation Chapter 4 Extended Response 12. Explain the reason for the hydrogen line-emission spectrum.

25 Chapter 4 Extended Response
Standardized Test Preparation Chapter 4 Extended Response 12. Explain the reason for the hydrogen line-emission spectrum. Answer: Electrons in atoms can occupy orbitals of only specific energies. When an atom is excited, the electron is no longer in the ground state. When the electron returns to a lower energy level, light is emitted. Because only specific energies are allowed, certain wavelengths of light are emitted, giving rise to the individual lines in the spectrum.

26 Chapter 4 Extended Response
Standardized Test Preparation Chapter 4 Extended Response 13. When blue light shines on potassium metal in a photocell, electrons are emitted. But when yellow light shines on the metal, no current is observed. Explain.

27 Chapter 4 Extended Response
Standardized Test Preparation Chapter 4 Extended Response 13. When blue light shines on potassium metal in a photocell, electrons are emitted. But when yellow light shines on the metal, no current is observed. Explain. Answer: Photons of blue light are higher energy than photons of yellow light. Electrons can be emitted only when a photon of sufficient energy strikes the surface of the metal. Therefore, the energy of blue light is greater than the threshold energy, but the energy of yellow light is not.


Download ppt "Chapter 4 Preview Multiple Choice Short Answer Extended Response"

Similar presentations


Ads by Google