Download presentation
Presentation is loading. Please wait.
Published byBrice Flynn Modified over 9 years ago
1
Least squares & Rietveld Have n points in powder pattern w/ observed intensity values Y i obs Minimize this function: Have n points in powder pattern w/ observed intensity values Y i obs Minimize this function:
2
Least squares & Rietveld Minimize this function: Substitute for Y i calc background at point i Minimize this function: Substitute for Y i calc background at point i
3
Least squares & Rietveld Minimize this function: Substitute for Y i calc scale factor Minimize this function: Substitute for Y i calc scale factor
4
Least squares & Rietveld Minimize this function: Substitute for Y i calc no. of Bragg reflections contributing intensity to point i Minimize this function: Substitute for Y i calc no. of Bragg reflections contributing intensity to point i
5
Least squares & Rietveld Minimize this function: Substitute for Y i calc integrated intensity of j th Bragg reflection (area under peak) Minimize this function: Substitute for Y i calc integrated intensity of j th Bragg reflection (area under peak)
6
Least squares & Rietveld Minimize this function: Substitute for Y i calc peak shape function Minimize this function: Substitute for Y i calc peak shape function
7
Least squares & Rietveld Minimize this function: Substitute for Y i calc x j = 2 j calc – 2 i Minimize this function: Substitute for Y i calc x j = 2 j calc – 2 i
8
Least squares & Rietveld FOMs Profile residual FOMs Profile residual
9
Least squares & Rietveld FOMs Profile residual Weighted profile residual FOMs Profile residual Weighted profile residual
10
Least squares & Rietveld FOMs Bragg residual FOMs Bragg residual
11
Least squares & Rietveld FOMs Bragg residual Expected profile residual FOMs Bragg residual Expected profile residual
12
Least squares & Rietveld FOMs Goodness of fit FOMs Goodness of fit
13
Least squares & Rietveld
14
Best data possible Best models possible Vary appropriate parameters singly or in groups Best data possible Best models possible Vary appropriate parameters singly or in groups
15
Least squares & Rietveld Best data possible Best models possible Vary appropriate parameters singly or in groups Watch correlation matrix – adjust as necessary Watch parameter shifts – getting smaller? Watch parameter standard deviations – compare to shifts Best data possible Best models possible Vary appropriate parameters singly or in groups Watch correlation matrix – adjust as necessary Watch parameter shifts – getting smaller? Watch parameter standard deviations – compare to shifts
16
Least squares & Rietveld Best data possible Best models possible Vary appropriate parameters singly or in groups Watch correlation matrix – adjust as necessary Watch parameter shifts – getting smaller? Watch parameter standard deviations – compare to shifts Check FOMs - Converging? Always inspect plot of obs and calc data, and differences Best data possible Best models possible Vary appropriate parameters singly or in groups Watch correlation matrix – adjust as necessary Watch parameter shifts – getting smaller? Watch parameter standard deviations – compare to shifts Check FOMs - Converging? Always inspect plot of obs and calc data, and differences
17
Rietveld - background Common background function - polynomial b i = B m (2 i ) m determine Bs to get backgrd intensity b i at i th point Common background function - polynomial b i = B m (2 i ) m determine Bs to get backgrd intensity b i at i th point m=0 N N
18
Common background function - polynomial b i = B m (2 i ) m determine Bs to get backgrd intensity b i at i th point Many other functions b i = B 1 + B m cos(2 m-1 ) Amorphous contribution b i = B 1 + B 2 Q i + (B 2m+1 sin(Q i B 2m+2 ))/ Q i B 2m+2 Q i = 2π/d i Common background function - polynomial b i = B m (2 i ) m determine Bs to get backgrd intensity b i at i th point Many other functions b i = B 1 + B m cos(2 m-1 ) Amorphous contribution b i = B 1 + B 2 Q i + (B 2m+1 sin(Q i B 2m+2 ))/ Q i B 2m+2 Q i = 2π/d i m=0 N N N N m=2 m=1 N-2 Rietveld - background
19
Rietveld - peak shift 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6
20
Rietveld - peak shift 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 axial divergence 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 axial divergence
21
Rietveld - peak shift 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 axial divergence p 1 = –h 2 K 1 /3RR = diffractometer radius p 2 = –h 2 K 2 /3RK 1, K 2 = constants for collimator h = specimen width 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 axial divergence p 1 = –h 2 K 1 /3RR = diffractometer radius p 2 = –h 2 K 2 /3RK 1, K 2 = constants for collimator h = specimen width
22
Rietveld - peak shift 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 flat sample 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 flat sample
23
Rietveld - peak shift 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 flat sample p 3 = – 2 /K 3 = beam divergence K 3 = constant 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 flat sample p 3 = – 2 /K 3 = beam divergence K 3 = constant
24
Rietveld - peak shift 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 specimen transparency 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 specimen transparency
25
Rietveld - peak shift 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 specimen transparency p 4 = 1/2 eff R eff = effective linear absorption coefficient 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 specimen transparency p 4 = 1/2 eff R eff = effective linear absorption coefficient
26
Rietveld - peak shift 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 specimen displacement p 5 = –2s/R s = displacement 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 specimen displacement p 5 = –2s/R s = displacement
27
Rietveld - peak shift 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 zero error 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 zero error
28
Rietveld - peak shift 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 p 4, p 5, & p 6 strongly correlated when refined together 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 p 4, p 5, & p 6 strongly correlated when refined together
29
Rietveld - peak shift 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 p 4, p 5, & p 6 strongly correlated when refined together When instrument correctly aligned, generally need get only p 5 2 obs = 2 calc + 2 where 2 = p 1 /tan 2 p 2 /sin 2 p 3 /tan p 4 sin 2 p 5 cos p 6 p 4, p 5, & p 6 strongly correlated when refined together When instrument correctly aligned, generally need get only p 5
30
Preferred orientation In powder diffractometry, usually assume random orientation For this, need >10 6 randomly oriented particles In powder diffractometry, usually assume random orientation For this, need >10 6 randomly oriented particles
31
Preferred orientation In powder diffractometry, usually assume random orientation For this, need >10 6 randomly oriented particles Extremes: diffraction vector plates needles diffraction vector normal cylindrical symmetry In powder diffractometry, usually assume random orientation For this, need >10 6 randomly oriented particles Extremes: diffraction vector plates needles diffraction vector normal cylindrical symmetry
32
Preferred orientation In powder diffractometry, usually assume random orientation For this, need >10 6 randomly oriented particles Extremes: diffraction vector plates needles diffraction vector normal cylindrical symmetry In powder diffractometry, usually assume random orientation For this, need >10 6 randomly oriented particles Extremes: diffraction vector plates needles diffraction vector normal cylindrical symmetry soso s S = s - s o
33
Preferred orientation March-Dollase function (a la GSAS) plates needles March-Dollase function (a la GSAS) plates needles
34
Preferred orientation March-Dollase function (a la GSAS) plates needles March-Dollase function (a la GSAS) plates needles # symmetrically equivalent reflections multiplier in intensity equation
35
Preferred orientation March-Dollase function (a la GSAS) plates needles March-Dollase function (a la GSAS) plates needles # symmetrically equivalent reflections multiplier in intensity equation preferred orientation parameter (refined) preferred orientation parameter (refined)
36
Preferred orientation March-Dollase function (a la GSAS) plates needles March-Dollase function (a la GSAS) plates needles # symmetrically equivalent reflections multiplier in intensity equation preferred orientation parameter (refined) preferred orientation parameter (refined) angle betwn orientation axis & diffraction vector for hkl
37
Preferred orientation March-Dollase function - needles probability of reciprocal lattice point to be in reflecting position March-Dollase function - needles probability of reciprocal lattice point to be in reflecting position
38
Preferred orientation Spherical harmonics (a la GSAS) hkl sample orientation
39
Preferred orientation Spherical harmonics (a la GSAS) hkl sample orientation harmonic coefficients harmonic functions
40
Preferred orientation Preferred orientation model using 2 nd & 4 th order spherical harmonics for (100) in orthorhombic
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.