Download presentation
1
Sets jadhav s.s. M.S.V.Satara
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ Algebra STANDARD IX B C A A ∩ B B ∩ C A ∩ B∩ C A ∩ C Std-9th Sub-Mathematics Sets jadhav s.s. M.S.V.Satara Chapt.-Sets
2
Brilliant students in my class
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ Brilliant students in my class (b) Happy people in my town (c) My bouquet (a) My numbers 2,10,6,11,4,8 (d) My objects (e) Richest person Town (f) Std-9th Sub-Mathematics Chapt.-Sets
3
(є:belongs to , є:does not belongs to)
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ The objects in the posters of (a),(d),(e)are clearly seen. Such collections are well defined collections. The names of students or persons in posters (b),(c), (f) are not one and the same , such collections are not well defined collections. A well defined collection of objects is called a set. Individual object in the set is called an element or member of the set. Sets are denoted by capital alphabets e.g. A,B,C, etc.The elements of sets are generally denoted by small alphabets e.g. a,b,c etc. If x is an element of the set X then we write it as xє X and if x is not an element of set X then we write x є X. (є:belongs to , є:does not belongs to) Std-9th Sub-Mathematics Chapt.-Sets
4
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ
Common notations (a) N= the set of nonnegative integers or natural number={1,2,3,...} (b) W= the set of whole numbers= {0,1,2,3,...} (c) I=the set of integers={…,-3,-2,-1,0,1,2,3,...} (d) Q=the set of rational numbers (e) Q+=the set of positive rational numbers (f) R=the set of real numbers Std-9th Sub-Mathematics Chapt.-Sets
5
Methods of writing sets
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ Sets Methods of writing sets (a) Listing method(Roster form) (b)Rule method(Set builder form) Std-9th Sub-Mathematics Chapt.-Sets
6
Sets LISTING METHOD(Roster form)
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ Sets LISTING METHOD(Roster form) In this method ,first write the name of the set , put is equal sign and write all its elements enclosed within curly brackets{ }. Elements are separated by commas. An element , even if repeated , is listed only once. The order of the elements in a set is immaterial. Std-9th Sub-Mathematics Chapt.-Sets
7
e .g. 1) The set of all natural numbers less than ten.
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ e .g. 1) The set of all natural numbers less than ten. A={1,2,3,4,5,6,7,8,9} 2) The set of colours in the rainbow. B={red ,orange ,yellow ,green,blue,indigo,voilet} 3) C =The set of letters in the word ‘MATHEMATICS’ C={m , a , t ,h ,i ,c , s} Std-9th Sub-Mathematics Chapt.-Sets
8
Rule Method(Set builder form)
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ Rule Method(Set builder form) In the set builder form we describe the elements of the set by specifying the property or rule that uniquely determines the elements of the set. Consider the set P={1,4,9,16,} P={x x =n2,nєN , n=1,2,3,4,5} In this notation , the curly bracket stands for ‘the set of ’, vertical line stands for, such that. Here ‘x’ represents each elements of that set. And read as “P is the set of all x such that x is equal to n2,where n є N and n is less than or equal to 5.” Std-9th Sub-Mathematics Chapt.-Sets
9
e . g. 1)The set of prime numbers from 1 to 20 A={2,3,5,7,11,13,17,19}
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ e . g. 1)The set of prime numbers from 1 to 20 A={2,3,5,7,11,13,17,19} This can be written in set builder form as : A={x x is a prime number less than 20 } 2)B={-7,7} B={x:xis a square root of 49} Std-9th Sub-Mathematics Chapt.-Sets
10
A={ 1,2,3,4,5} can be represented as
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ Venn-Diagrams : Many ideas or concepts are better understood with help of diagrams . Such presentation used for sets is called Venn-diagram .For this use the closed figure and elements of the sets represented by points in that closed figure. A={ 1,2,3,4,5} can be represented as A A A A or .4 .5 .1 .4 .2 .1 .3 .1 .4 .3 .1 .3 or or .2 .5 .2 .4 .5 .2 .5 .3 Chapt.-Sets Std-9th Sub-Mathematics
11
Sets 1) Empty set or Null set : 2) Singleton Set : Types of sets:
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ Sets Types of sets: 1) Empty set or Null set : A set which does not contain any element is called Empty or Null set. It is denoted by {} or Φ e.g. The set of men whose heights are more than 5meter. 2) Singleton Set : A set containing exactly one element is called a Singleton set. e.g )P={x:x is a natural number,4<=x<=6} 2)E={0} Std-9th Sub-Mathematics Chapt.-Sets
12
Sets Infinite set : Finite set :
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ Sets Finite set : If the counting process of elements of a set terminates , such a set is called a finite set. e.g. B={1,2,3,…,200000} D={a,e,i,o,u} Infinite set : If the counting process of elements of a set do not terminates at any stage , such a set is called a Infinite set. e.g. N={1,2,3,4,…} Std-9th Sub-Mathematics Chapt.-Sets
13
Subset : A={1,2,3,4,5,6,7} and B={3,6,7} Consider
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ Subset : A .4 Consider B .1 .3 .2 .7 A={1,2,3,4,5,6,7} and .6 .5 B={3,6,7} Here ,every element of set B is an element of the set A If every element of set B is an element of set A then set B is said to be the Subset of set A and we write as B A. Std-9th Sub-Mathematics Chapt.-Sets
14
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ
Sets If B is a subset of A and the set A contains at least one element which is not in the set B, then the set B is the Proper subset of set A. It is denoted as B U A. In this case the set A is said to be the Super set of set of the set B and is denoted as B U A. Note:1) Every set is a subset of itself. 2)Every set is a subset of every set. Std-9th Sub-Mathematics Chapt.-Sets
15
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ
Sets Universal set : A suitable chosen non-empty set of which all the sets under consideration are the subsets of that set is called the Universal set. e.g. If A={2,3},B={1,4,5},C={2,4} then U={1,2,3,4,5} can be taken as the universal set of the sets A,B and C. Std-9th Sub-Mathematics Chapt.-Sets
16
Operations on sets Sets
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ Sets Operations on sets (a)Equality: If A is subset of B and B is subset of A, then A and B are said to be equal sets and are denoted by A=B. e.g. If A={2,4,6,8},B={4,8,2,6,} then A=B. Std-9th Sub-Mathematics Chapt.-Sets
17
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ
Operations on sets : (b)Intersection of sets: If A={1,2,3,4, 6,7} and B={2,4,5,6,8} then C={2,4,6} is called the intersection of the sets A and B. The set of all common elements of A and B is called the intersection A and B. A U B B A .5 .1 .2 .3 .4 .8 .6 .7 Std-9th Sub-Mathematics Chapt.-Sets
18
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ
Operations on sets : Disjoint sets: Let A={1,2,3,4} and B={5,6,7,8} Here both sets A and B have no common elements . Therefore set A and B are Disjoint sets. A ∩ B={ } or Φ A .1 B .3 .4 .5 .6 .7 .2 .8 Std-9th Sub-Mathematics Chapt.-Sets
19
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ
Properties of Intersection of sets: 1)A ∩ B =B∩ A (commutative property) 2)A ∩ (B ∩ C) =(A ∩ B) ∩ C (associative property) 3) A ∩ B ⊆ A; A ∩ B ⊆ B 4)If A ⊆ P; B ⊆ P then A ∩ B ⊆ P 5)If A ⊆ B then A ∩ B=A. If B ⊆ A then A ∩ B = B 6)A ∩ Φ = Φ and A ∩ A =A Std-9th Sub-Mathematics Chapt.-Sets
20
Operations on sets: (c) Union of sets: A U B
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ Operations on sets: (c) Union of sets: Let A={1,2,3,4} and B={4,5,6,1,8} be the sets. If we write set C , which contains all the elements of A and B together is called the Union of sets A and B.As follows C={1,2,3,4,5,6,8} .3 B A .4 .5 .6 .1 .2 .8 A U B Std-9th Sub-Mathematics Chapt.-Sets
21
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ
Properties of Union of sets: 1)A U B=B U A 2)A U (B U C)=(A U B) U C 3)A ⊆ (A U B) and B ⊆ ( A U B) 4)If A ⊆ B then (A U B) =B and (B U A) =A 5)(A U ø ) =A 6)(A U A)=A Std-9th Sub-Mathematics Chapt.-Sets
22
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ
Operations on sets : (d)Difference of two sets : Consider the following two sets. A={1,2,3,4,5}and B={1,2,6,7,8} If we write the set C , which contains all the elements in set A but not in set B is called the Difference of sets A and B .As C={3,4,5} B A .6 .5 .1 .3 .7 .2 .8 .4 A-B Std-9th Sub-Mathematics Chapt.-Sets
23
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ
Properties of Difference of sets: 1)A - B ≠ B - A 2)A-B ⊆ A 3)If A ⊆ B, then A –B= ø 4)If A ∩ B= ø, then A - B =A Std-9th Sub-Mathematics Chapt.-Sets
24
U A .1 .6 .2 .3 .4 .5 .7 .8 A={2,3,5} Operations on sets :
¸üµÖŸÖ ׿ÖÖÖ ÃÖÓãÖÖ, ú´ÖÔ¾Ö߸ü ×¾ÖªÖ¯ÖϲÖÖê׬ÖÖß, ´Ö¬µÖ ×¾Ö³ÖÖÖ, ÃÖÖŸÖÖ¸üÖ Operations on sets : (e)Complement of set : Consider U={ x:x is a natural number , x<9} A={2,3,5} First we U in the roster form U={1,2,3,4,5,6,7,8} then U-A ={1,4,6,7,8} Now if we observe (U-A). It contains all those elements of U which are not in A. Here, (U-A) is called the complement of A . It is denoted by A, or Ac . U A .1 .6 .2 .3 .4 .5 .7 (U-A) or Ac .8 Std-9th Sub-Mathematics Chapt.-Sets
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.