Download presentation
Presentation is loading. Please wait.
Published byArron Terry Modified over 9 years ago
1
Sorting
2
Sorting Terminology Sort Key –each element to be sorted must be associated with a sort key which can be compared with other keys e.g. for any two keys k i and k j, k i > k j, k i < k j,or k i = k j
3
Sorting Terminology The Sorting Problem Arrange a set of records so that the values of their key fields are in non- decreasing order.
4
Sorting Algorithms (Running Time Analysis) Things to measure –comparisons bet. keys –swaps The measure of these things usually approximate fairly accurately the running time of the algorithm.
5
Sorting Algorithms Insertion Sort O( n 2 ) Bubble Sort O( n 2 ) Selection Sort O( n 2 ) Shellsort O( n 1.5 ) Quicksort O( nlog 2 n ) Mergesort O( nlog 2 n ) Heapsort O( nlog 2 n ) Binsort O( n ) w/ qualified input Radix Sort O( n ) w/ qualified input
6
Insertion Sort: Algorithm void insertionSort( Elem[] a, int n ) { for( int i = 1; i < n; i++ ) {for( int j = i; (j > 0) && ( a[ j].key < a[ j-1].key); j-- ) {swap( a[ j], a[ j-1] ) }
7
Insertion Sort: Illustration
8
Insertion Sort: Time complexity outer for loop executed n-1 times inner for loop depends on how many keys before element i are less than it. –worst case: reverse sorted (each i th element must travel all the way up) running time: (n-1)(n)/2 => O( n 2 ) –best case: already sorted (each i th element does not need to travel at all) running time: (n-1) => O( n ) –average case: { (n-1)(n)/2 } / 2 => O( n 2 )
9
Bubble Sort: Algorithm void bubbleSort( Elem[] a, int n ) { for( int i = 0; i < n-1; i++ ) {for( int j = n-1; j > i; j-- ) {if( a[ j].key < a[j-1].key ) {swap( a[ j], a[ j-1] ) }
10
Bubble Sort: Illustration
11
Bubble Sort: Time complexity number of comparisons in inner for loop for the i th iteration is always equals to i –running time: i = n(n+1)/2 O( n 2 ) n i = 1
12
Selection Sort: Algorithm void selectionSort( Elem[] a, int n ) { for( int i = 0; i < n-1; i++ ) {int lowindex = i for( int j = n-1; j > i; j-- ) {if( a[ j].key < a[ lowindex ].key ) {lowindex = j; } swap( a[i], a[ lowindex ] ) }
13
Selection Sort: Illustration
14
Selection Sort: Time complexity number of comparisons in inner for loop for the i th iteration is always equals to i –running time: i = n(n+1)/2 O( n 2 ) n i = 1
15
Shellsort: Algorithm void shellsort( Element[] a ) { for( int i = a.length/2; i >= 2; i /=2 ) {for( int j = 0; j < i; j++ ) {insertionSort2( a, j, a.length-j, i ); } insertionSort2( a, 0, a.length, 1 ); } void insertionSort2( Element[] a, int start, int n, int incr ) { for( int i=start+incr; i<n; i+=incr) {for( j=i; (j>=incr) && (a[ j].key < a[ j-incr].key); j-=incr) {swap( a[j], a[j-incr] ); }
16
Shellsort: Illustration
17
Shellsort: Time complexity O( n 1.5 )
18
Quicksort: Algorithm void quicksort( Elem[] a, int I, int j ) {int pivotindex = findpivot( a, i, j ) swap( a[pivotindex], array[j] ) // stick pivot at the end int k = partition( a, i-1, j, a[j].key ) // k will be the first position in the right subarray swap( a[k], a[j] )// put pivot in place if( k-i > 1 )quicksort( a, i, k-1 )// sort left partition if( j-k > 1 )quicksort( a, k+1, j )// sort right partition } int findpivot( Elem[] A, int i, int j ){ return ( (i+j) / 2 ) } int partition( Elem[] A, int l, int r, Key pivot ) {do// move the bounds inward until they meet { while( a[++l ].key < pivot )// move left bound right while( r && a[--r].key > pivot )// move right bound left swap( a[l], a[r] )// swap out-of-place values }while( l < r )// stop when they cross swap( a[l], a[r] )// reverse last, wasted swap return l// return the first position in right position }
19
Quicksort: Illustration
21
Quicksort: Time complexity findpivot() takes constant time: 0(1) partition() depends on the length of the sequence to be partitioned: –O(s) for sequence of length s Worst-case: when pivot splits the array of size n into partitions of size n-1 and 0. O(n 2 ) Best case: when pivot always splits the array into two equal halves. –There will be log 2 n levels (1 st level: one n sequence, 2 nd level: two n/2 sequences, 3 rd level: four n/4 sequences, …): O(nlog 2 n) Average case: O( n log 2 n ) –given by the recurrence relation T( n ) = cn + 1/n ( T( k ) + T( n - 1 - k ) ), T(0) = c, T(1) = c n-1 k = 0
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.