Download presentation
Presentation is loading. Please wait.
Published byBritney Riley Modified over 9 years ago
1
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 1 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 1 Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Engr/Math/Physics 25 Chp4 MATLAB Programming-4
2
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 2 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 2 Learning Goals Write MATLAB Programs That can MAKE “Logical” Decisions that Affect Program Output Write Programs that Employ LOOPing Processes For → No. Loops know a priori while → Loop Terminates based on Logic Criteria
3
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 3 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 3 Loop Structures The conditional statements ( if, else, elseif ) we learned last time allowed us to determine at run-time whether or not to execute a block of code. What these Decision Statements Do NOT do is to allow us to execute a block more than once The TWO Things that Computers Do Better than People STORE Massive Amounts of Data REPEAT operations
4
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 4 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 4 Repetition → LOOPs A “LOOP” is a Program Structure that REPEATS Until some CONDITION is MET The NUMBER of Loops may Be Known a priori (ahead of time) –No. of Loops Determined by simple COUNTING Determined Dynamically –No. of Loops Determined by a DECISION statement The Loop consists of A Condition Test A Repeated Statement-Block
5
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 5 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 5 Test vs Statement Locations PreTest Loop The key feature → we test to see whether or not to continue before executing the body of the loop. i.e., The Loop May Not Execute at All Good if Potential Zero Executions is Desired a.k.a. “While DO”
6
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 6 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 6 Test vs Statement Locations PostTest Loop The Key feature → Do Not Test Until the Block Executes at Least Once Use if Design Calls for at Least-One Repetition a.k.a. “DO While”
7
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 7 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 7 Test vs Statement Locations MidTest Loop The generalization of both the pre-test and the post-test loops Empty Block-1 → PreTest Loop Empty Block-2 → PostTest Loop
8
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 8 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 8 for Loop Statement A PreTested, COUNTED Loop Start k ≤ n? Statements-1 end Statements True False Set k = m Increment k by s No. Repetitions Known MATLAB Syntax for Counter = Start : Increment: End statements end
9
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 9 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 9 for Loop Rules Given for Loop Counting Variable: k=m:s:n The step value s may be negative –Example: k = 10:-2:4 produces k = 10, 8, 6, 4 If s is omitted, the step value defaults to +1 If s is positive, the loop will not be executed if m is greater than n If s is negative, the loop will not be executed if m is less than n If m equals n, the loop will be executed only once If the step value s is not an integer, round-off errors can cause the loop to execute a different number of passes than intended
10
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 10 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 10 The continue Statement The continue statement passes control to the next iteration of the loop in which it appears, skipping any remaining statements in the body of the loop. The Following Code Uses a continue x = [10,1000,-10,100]; y = NaN*x; for k = 1:length(x) if x(k) < 0 continue end y(k) = log10(x(k)); end statement to avoid taking the log of a negative number. The Result: y = 1, 3, NaN, 2
11
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 11 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 11 Remove continue Statement Let’s Fine Tune the No-Neg-Log Code by COMMENTING OUT the if- continue Commands x = [10,1000,-10,100]; y = NaN*x; for k = 1:length(x) %if x(k) < 0 %continue %end y(k) = log10(x(k)); end The Result: y = 1.0000 3.0000 1.0000 + 1.3644i 2.0000
12
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 12 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 12 Use of a Logical MASK The use of loops and branching can often be avoided, thus creating simpler and faster programs by using a logical array as a mask that selects elements of another array. Any elements not selected will remain unchanged. The following session creates the logical array D from the 3x3 numeric array B
13
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 13 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 13 Use of a Logical MASK cont Logical Mask Session >> B = [0, -1, 4; 9, -14, 25; -34, 49, 64] B = 0 -1 4 9 -14 25 -34 49 64 >> D = (B >= 0) D = 1 0 1 1 0 1 0 1 1 Mask Array → a Logical that “masks out” Negative numbers
14
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 14 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 14 Logical MASK cont >> B(D) = sqrt(B(D)) B = 0 -1 2 3 -14 5 -34 7 8 >> B(~D) = B(~D) + 50 B = 0 49 2 3 36 5 16 7 8 Negative Values Unchanged → Masked OUT by D(m,n) = 0 Original B = 0 -1 4 9 -14 25 -34 49 64 Positive Values Unchanged → Masked OUT by D(m,n) = 1 Logical Mask Session cont
15
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 15 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 15 while Loops The while loop is used when the looping process terminates because a specified condition is satisfied, and thus the number of passes is not known in advance. A simple example of a while loop is x = 5; while x < 25 disp(x) x = 2*x - 1; end Results from the disp statement are 5, 9, and 17.
16
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 16 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 16 while Loop Statement A PreTested DYNAMIC Loop Start Logical Decision Statements (MUST Increment Loop Variable) end Statements True False No. Repetitions UNknown MATLAB Syntax while Logical Expression statements end Set Loop Var Initial value
17
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 17 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 17 while Loop Statement For the while loop to function properly two conditions must occur Start Logical Decision Statements (MUST Increment Loop Variable) end Statements True False 1.The loop variable must have a value before the while statement is executed 2.The loop variable must be changed somehow by the statements Inside the Loop Set Loop Var Initial value
18
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 18 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 18 while Loop Example A simple while loop x = 5;k = 0; while x < 25 k = k + 1 y(k) = 3*x; x = 2*x-1 end The Results k = 1 x = 9 k = 2 x = 17 k = 3 x = 33 The loop variable x is initially assigned the value 5, and it keeps this value until the statement x = 2*x - 1 is encountered the first time. Its value then changes to 9. Before each pass through the loop, x is checked to see if its value is less than 25. If so, the pass is made. If not, the loop terminates >> y y = 15 27 51
19
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 19 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 19 Another while Loop Example Write a.m- file to determine The min. number of terms required for the sum of the series 5k 2 – 2k; k = 1, 2, 3, … to exceed 10,000. the sum for this number of terms The.m-file and the Results tot = 0;k = 0; while tot < 10e3 k = k + 1; tot = 5*k^2 - 2*k + tot; end disp(‘No. terms = ') disp(k) disp('The Sum = ') disp(tot) No. Terms = 18 Sum = 10203
20
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 20 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 20 The switch Structure The switch structure provides an alternative to using the if, elseif, and else commands. Anything programmed using switch can also be programmed using if structures. However, for some applications the switch structure produces more readable code than when using the if structure.
21
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 21 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 21 MATLAB switch Syntax switch input expression (which can be a scalar or string). case value1 statement group 1 case value2 statement group 2... otherwise statement group n end
22
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 22 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 22 switch Example This switch Block displays the High School Class-Name that Corresponds to a Given Grade Level grade_level = input('Hi- School Grade Level.: '); switch grade_level case 9 disp(' Freshman') case 10 disp(' Sophomore') case 11 disp(' Junior') case 12 disp(' Senior') otherwise disp(' NOT a Hi-Schl Grade Lvl') end
23
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 23 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 23 switch Example Results Hi-School Grade Level.: 9 Freshman Hi-School Grade Level.: 11 Junior Hi-School Grade Level.: 13 NOT a Hi-Schl Grade Lvl Hi-School Grade Level.: 10 Sophomore
24
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 24 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 24 Example: Prob 4.24 Consider an Electrical Diode → We can MODEL the V-I Behavior of this Device in Several ways V I REAL Behavior IDEAL Model OFFSET Model LINEAR Model
25
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 25 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 25 Problem-24 cont The Diode exhibits a form of RECTIFICATION i.e., It allows current to Flow in the FORWARD direction, But NOT in the REVERSE direction –Think of a diode as a “Check-Valve” for Electrical Current”
26
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 26 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 26 Problem-24 cont Now Let’s Connect the Diode to A Power Source, V s A Useful Load, R L Next Assume that V s is a Decaying Sinusoidal, Alternating Current (AC) Voltage-Source modeled mathematically as +VL +VL
27
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 27 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 27 Problem-24 → Plot Vs +VL +VL % Bruce Mayer, PE * 08Jul05 % ENGR25 * Problem 4-24 % file = Prob4_24_Vs_plot.m % INPUT SECTION tmax = input('Max time in sec = '); Vmax = input('Max Supply Potential in V = '); %CALCULATION SECTION % use linspace command to generate 500 time pts t = linspace(0,tmax,500); % Use for-Loop to generate plotting vector, vs for k = 1:500 % Calc SUPPLY V-Level vsup = Vmax*exp(-t(k)/3)*sin(pi*t(k)); vs(k) = vsup; end % PLOT SECTION plot(t,vs),ylabel('Load Voltage (V)'),xlabel('Time (sec)'),... title('Ideal-Diode Rectifier'), grid disp('Plot Complete')
28
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 28 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 28 Problem-24 → Plot Vs +VL +VL
29
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 29 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 29 Prob 24 cont Recall the Ideal-Diode Model → With This Diode Behavior we Expect Load a Voltage in this form IDEAL Model +VL +VL Write a MATLAB Program to Plot V L vs t for: 0 t 10s
30
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 30 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 30 Problem-24 → Plot V L Ideal +VL +VL % Bruce Mayer, PE * 08Jul05 % ENGR25 * Problem 4-24a % file = Prob4_24a_ideal_diode.m % INPUT SECTION tmax = input('Max time in sec = '); Vmax = input('Max Supply Potential in V = '); % CALCULATION SECTION % use linspace command to generate 500 time pts t = linspace(0,tmax,500); % Use for-Loop to generate plotting vector, vL for k = 1:500 % Calc SUPPLY V-Level at the current t(k) vs = Vmax*exp(-t(k)/3)*sin(pi*t(k)); % chk Fwd or Rev condition by if-else if vs > 0 vL(k) = vs; else vL(k) = 0; end end plot(t,vL),ylabel('Load Voltage (V)'),xlabel('Time (sec)'),... title('Ideal-Diode Rectifier'), grid VSVS
31
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 31 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 31 Problem-24 → Plot V L Ideal IDEAL Model
32
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 32 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 32 Prob 24 cont Recall the OffSet-Diode Model → With This Diode Behavior we Expect Load Voltage in this form +VL +VL Write a MATLAB Program to Plot V L vs t for: 0 t 10s OFFSET Model
33
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 33 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 33 Problem-24 → Plot V L Offset +VL +VL % Bruce Mayer, PE * 08Jul05 % ENGR25 * Problem 4-24b % file = Prob4_24b_offset_diode.m % INPUT SECTION tmax = input('Max time in sec = '); Vmax = input('Max Supply Potential in V = '); % CALCULATION SECTION % use linspace command to generate 500 time pts t = linspace(0,tmax,500); % Use for-Loop to generate plotting vector, vL for k = 1:500 % Calc SUPPLY V-Level at current t(k) vs = Vmax*exp(-t(k)/3)*sin(pi*t(k)); % chk Fwd or Rev condition by if-else if vs > 0.6 vL(k) = vs-0.6; else vL(k) = 0; end end plot(t,vL),ylabel('Load Voltage (V)'),xlabel('Time (sec)'),... title('Offset-Diode Rectifier'), grid VSVS
34
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 34 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 34 Problem-24 → Plot V L Offset OFFSET Model
35
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 35 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 35 Prob 24 Analysis Compare Plots Side-by-Side 0.6V Offset has a large affect when the V s amplitude is only 3V OffSet is 20% of amplitude +VL +VL
36
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 36 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 36 Prob 24 Analysis Plots for 24V amplitude Makes less difference Note different vertical scales +VL +VL
37
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 37 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 37 All Done for Today Sinusoidal HalfWave Rectifier
38
BMayer@ChabotCollege.edu ENGR-25_Programming-4.ppt 38 Bruce Mayer, PE Engineering/Math/Physics 25: Computational Methods 38 Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Engr/Math/Physics 25 Appendix
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.