Presentation is loading. Please wait.

Presentation is loading. Please wait.

ENE 429 Antenna and Transmission lines Theory

Similar presentations


Presentation on theme: "ENE 429 Antenna and Transmission lines Theory"— Presentation transcript:

1 ENE 429 Antenna and Transmission lines Theory
Lecture 2 Uniform plane waves

2 Review Wave equations Time-Harmonics equations where

3 Time-harmonic wave equations
or where This  term is called propagation constant or we can write  = +j where  = attenuation constant (Np/m)  = phase constant (rad/m)

4 Transverse ElectroMagnetic wave (TEM)

5 Solutions of Helmholtz equations
The instantaneous forms of the solutions The phasor forms of the solutions incident wave reflected wave

6 Attenuation constant 
Attenuation constant determines the penetration of the wave into a medium Attenuation constant are different for different applications The penetration depth or skin depth,  is the distance z that causes to reduce to z = 1  z = 1/  = 

7 Good conductor At high operation frequency, skin depth decreases
A magnetic material is not suitable for signal carrier A high conductivity material has low skin depth

8 Currents in conductor To understand a concept of sheet resistance from
Rsheet () sheet resistance At high frequency, it will be adapted to skin effect resistance

9 Currents in conductor Therefore the current that flows through the slab at t   is

10 Currents in conductor From
Jx or current density decreases as the slab gets thicker

11 Currents in conductor For distance L in x-direction
R is called skin resistance Rskin is called skin-effect resistance For finite thickness,

12 Currents in conductor Current is confined within a skin depth of the coaxial cable

13 Ex1 A steel pipe is constructed of a material for which r = 180 and  = 4106 S/m. The two radii are 5 and 7 mm, and the length is 75 m. If the total current I(t) carried by the pipe is 8cost A, where  = 1200 rad/s, find: The skin depth The skin resistance

14 c) The dc resistance

15 The Poynting theorem and power transmission
Total power leaving the surface Joule’s law for instantaneous power dissipated per volume (dissi- pated by heat) Rate of change of energy stored In the fields Instantaneous poynting vector

16 Example of Poynting theorem in DC case
Rate of change of energy stored In the fields = 0

17 Example of Poynting theorem in DC case
From By using Ohm’s law,

18 Example of Poynting theorem in DC case
Verify with From Ampère’s circuital law,

19 Example of Poynting theorem in DC case
Total power W

20 Uniform plane wave (UPW) power transmission
Time-averaged power density W/m2 amount of power W for lossless case, W/m2

21 Uniform plane wave (UPW) power transmission
for lossy medium, we can write intrinsic impedance for lossy medium

22 Uniform plane wave (UPW) power transmission
from W/m2 Question: Have you ever wondered why aluminum foil is not allowed in the microwave oven?

23 Polarization UPW is characterized by its propagation direction and frequency. Its attenuation and phase are determined by medium’s parameters. Polarization determines the orientation of the electric field in a fixed spatial plane orthogonal to the direction of the propagation.

24 Linear polarization Consider in free space,
At plane z = 0, a tip of field traces straight line segment called “linearly polarized wave”

25 Linear polarization A pair of linearly polarized wave also produces linear polarization At z = 0 plane At t = 0, both linearly polarized waves Have their maximum values

26 More generalized linear polarization
More generalized of two linearly poloraized waves, Linear polarization occurs when two linearly polarized waves are in phase out of phase

27 Elliptically polarized wave
Super position of two linearly polarized waves that If x = 0 and y = 45, we have

28 Circularly polarized wave
occurs when Exo and Eyo are equal and Right hand circularly polarized (RHCP) wave Left hand circularly polarized (LHCP) wave

29 Circularly polarized wave
Phasor forms: for RHCP, for LHCP, from Note: There are also RHEP and LHEP

30 Ex2 Given ,determine the polarization of this wave

31 Ex3 The electric field of a uniform plane wave in free space is given by , determine
The magnetic field intensity

32 c) d) Describe the polarization of the wave


Download ppt "ENE 429 Antenna and Transmission lines Theory"

Similar presentations


Ads by Google