Presentation is loading. Please wait.

Presentation is loading. Please wait.

Cosmic Rays Gammas, Hadrons, Neutrinos Thomas Lohse Humboldt University Berlin HEP2005 International Europhysics Conference on High Energy Physics July.

Similar presentations


Presentation on theme: "Cosmic Rays Gammas, Hadrons, Neutrinos Thomas Lohse Humboldt University Berlin HEP2005 International Europhysics Conference on High Energy Physics July."— Presentation transcript:

1 Cosmic Rays Gammas, Hadrons, Neutrinos Thomas Lohse Humboldt University Berlin HEP2005 International Europhysics Conference on High Energy Physics July 27 th 2005 Lisboa, Portugal

2 The Cosmic Ray Spectrum Power Laws Shock Acceleration predicts F Source  E  2 Discovery Balloon Flight Victor Hess, 1912 solar modulation  E  2.7, mostly protons transition to heavier nuclei  E  3.1 mostly Fe? Knee ? Ankle EAS Detectors Direct Measurements transition to lighter nuclei ?

3 Open questions after  90 years  What and where are the sources?  How do they work?  Are the particles really accelerated?...  …or due to new physics at large mass scales?  And how do cosmic rays manage to reach us?

4 Production in Cosmic Accelerators protons/nuclei electrons/positrons p 00  radiation fields and matter p  ee  Inverse Compton (+Bremsstr.)

5 Experimental Techniques ( E  10 GeV ) Instrumented Water / Ice Scintillator or Water Č   Č-Telescope Č Fluorescence Detector Hadron- Detector Fluorescence Primary (Hadron,Gamma) Air Shower Atmospheric (4  )  Primary (4  ) , e,  R&D Radio-Detection Acoustic-Detection

6 Outline 1.The nature of the knee 2.Cosmic rays beyond the ankle 3.Neutrinos from cosmic ray sources 4.Gammas from cosmic ray sources 1.The nature of the knee 2.Cosmic rays beyond the ankle 3.Neutrinos from cosmic ray sources 4.Gammas from cosmic ray sources Outline

7 log E log  E 2.5  F  p Si Fe Knee Interpretation of the Knee E Knee  Z New physics in air shower development new strong interaction E Knee  A Diffusive escape from galactic B-field Maximum acceleration energy

8 KASCADE: Unfolding for individual mass groups Input: measured n e vs. n  hadronic interaction models large model dependence no model describes all data more experimental input for hadronic interaction models needed

9 1.The nature of the knee 2.Cosmic rays beyond the ankle 3.Neutrinos from cosmic ray sources 4.Gammas from cosmic ray sources

10 p beyond ankle Greisen-Zatsepin-Kuzmin Cut-Off: Energy loss in cosmic microwave background (CMB) p(100 EeV) +  (CMB)  p + , n +  p(100 EeV) p   p below ankle  isotropized in B-fields E  eV 10 20 10 19 10 18 E3FEE3FE cut-off reprocessed p

11 no GZK cut-off? triplet model fit to HIRes data AGASA HIRes Fly’s Eye AGASA AGASA: surface detector array HIRes: fluorescence light detector Spectra consistent allowing for 30% systematic energy shift…

12 The Pierre Auger Project 3000 km 2 Hybrid Detector 1600 Water Č-Detectors  50% installed 4 Fluorescence Sites 3 fully operational AGASA

13 Energy Calibration of Surface Detectors 14% duty cycle Present Systematics: Calibration 12% Fluorescence yield 15% Clean EeV Hybrid Events contemporaneous atmospheric monitoring statistically limited up to now… calorimetric measurement  independent of primary composition  independent of air shower details

14 First Look at  3 EeV Energy Spectrum ( from surface detector array ) Data: Jan. 2004 – Jan 2005 Exposure: 1750 km 2 sr yr  AGASA + 7% Events: 3525 Power Law Fit systematic errors

15 AUGER best fit preliminary Calibration uncertainty

16 Search for Localized Excess Fluxes with AUGER Exposure Map Event Map Example: 1 EeV  E  5 EeV 5  Smoothing 30548 events AGASA evidence for small scale anisotropies NOT confirmed! Excess significance distribution

17  AUGER Search for Individual Targets: No Signals  AGASA / SUGAR excesses close to galactic centre NOT confirmed (with larger statistics) SUGAR ( 10 17.9  10 18.5 eV ) 2.9  5.5  AGASA ( 10 18  10 18.4 eV ) 4.5  20 

18 1.The nature of the knee 2.Cosmic rays beyond the ankle 3.Neutrinos from cosmic ray sources 4.Gammas from cosmic ray sources

19 Amundsen-Scott South Pole Station South Pole Dome Summer camp AMANDA 1500 m 2000 m [not to scale] IceCube (in construction) The Main Players presently: Amanda / IceCube, South Pole Ice BAIKAL, Water of Lake Baikal + future Mediterranean detectors

20 upward  (2  coverage) preliminary horizontal vertical atmospheric  Search for Diffuse Cosmic Neutrinos AMANDA 1 : B10, 97, ↑μ 2 : A-II, 2000, unfold. 3 : A-II, 2000, casc. 4 : B10, 97, UHE Baikal 5 : 98-03, casc. 1:1:1 flavour flux ratio all-flavour limits E  2 -Flux Limit  add directional & temporal constraints … IceCube 3 years

21    h   h 24 h   90   90  Point Source Search in Northern Hemisphere test region (MC-optimised) background estimation from real data AMANDA 2000-2003 preliminary Selected: 3329 clean  Expected: 3438 atmosph.  Selected: 3329 clean  Expected: 3438 atmosph.  Hemisphere averaged 33 pre-selected point-source candidates Source stacking (11 samples) Typical limits No significant excess

22    h   h 24 h   90   90  Unbinned Search for Clusters AMANDA 2000-2003 preliminary Significance Sky Map Maximum Excess  3.4  max. excess from random skymaps 3.4   92%

23 AMANDA Search for Transient Sources events time sliding window time window: 40 / 20 days angular bin: 2.25°-3.75° fixed a priori Source  Events  Backgr. window  doublets Prob. Markarian 42165.5840 days0Close to 1 1ES1959+65053.7140 days10.34 3EG J1227+430264.3740 days10.43 QSO 0235+16465.0440 days10.52 Cygnus X-365.0420 days0Close to 1 GRS 1915+10564.7620 days10.32 GRO J0422+3255.1220 days0Close to 1 12 Objects tested (over 4 years), no triplets found … BUT … …

24 5 events background dublet window 66 day triplet WHIPPLE E  > 0.6 TeV HEGRA E  > 2 TeV AMANDA – 1ES1959+650 – 2.25 o search bin size revisited a posteriori Orphan  -flare (not seen in X-rays)  Statistical significance hard to tell … but promising!  Lessons learned: Multimessenger & multiwavelength studies important. Use  -ray flares (not only X-rays)… The first cosmic ray neutrino ???

25 1.The nature of the knee 2.Cosmic rays beyond the ankle 3.Neutrinos from cosmic ray sources 4.Gammas from cosmic ray sources

26 H.E.S.S.CANGAROO III MAGIC Veritas in construction Cherenkov Telescopes (3 rd Generation)

27 resolution H.E.S.S. 2004 E   210 GeV RX J1713.7  3946 resolution H.E.S.S. 2004 E   210 GeV RX J1713.7  3946 1) Supernova Shells: Cosmic Ray Accelerators? H.E.S.S. 2005 preliminary preliminary E   500 GeV RX J0852.0  4622 Strong Correlation with X-ray Intensities SN-Shells are accelerating particles up to at least 100 TeV! But are these particles protons/nuclei or electrons?

28 E 2 dN/dE ln(E) Stars radio infrared visible light X-rays VHE  -rays CMB Dust Cosmic Electron Accelerators BEeBEe Electron or Hadron Accelerator? Synchrotron Radiation Inverse Compton BB EeEe Cosmic Proton Accelerators Matter Density  0  Synchrotron Radiation of Secondary Electrons

29 EGRET   2.0 B  7, 9, 11  G Electron accelerator fits for RX J1713.7  3946 : Continuous electron injection over 1000 years Injection spectrum: power law with cutoff IC peak not well described B-field low for SNR shell large  & injection rate  bremsstrahlung important needs tuning at low E B  10  G   2.0, 2.25, 2.5 H.E.S.S. preliminary models: F. Aharonian H.E.S.S. preliminary models: F. Aharonian

30 Spatially resolved spectra of RX J1713.7  3946 TeV / X-ray intensities correlate, but NOT the spectral shapes  very hard to understand for pure electron accelerator ! TeV photon index  const H.E.S.S. preliminary G. Cassam-Chenaï A&A 427, 199 (2004) X-ray photon index

31  Continuous proton injection over 1000 years  Injection spectrum: power law, index  2  Different cutoff shapes & diffusion parameters Proton accelerator fit: H.E.S.S. preliminary RX J1713.7  3946 models: F. Aharonian

32 Chandra GC survey NASA/UMass/D.Wang et al. CANGAROO (80%) Whipple (95%) H.E.S.S. Chandra GC survey NASA/UMass/D.Wang et al. CANGAROO (80%) Whipple (95%) Contours from Hooper et al. 2004 2) Galactic Centre: A TeV-  Point Source H.E.S.S. (95%) Astrophysical Source Candidates: 3  10 6 M ⊙ black hole Sgr A  ─EMF close to rotating black hole ─Accretion shocks Supernova Remnant Sgr A East ─Expanding shock waves Radio H.E.S.S. Systematic pointing error Radio Contour Sgr A* Sgr A East SNR

33  no visible cut-off  rather large mass  measured flux  large cross-section and/or DM density … or maybe dark matter annihilation ? 20 TeV Neutralino 20 TeV Kaluza Klein particle … unlikely ! H.E.S.S. (preliminary)

34 3) H.E.S.S. Scan of Inner Galactic Plane HESS J1834-087 HESS J1804-216 HESS J1640-465 Resolution 8 new sources, all extended! Possible counterparts: 7  SNR/PWN 1  ???

35 TeV-Gamma-RayRadioX-Ray … a new source class: “Dark Accelerators” Three sources known: TeV J2032  4130 (HEGRA) HESS J1303  631 HESS J1616  508 What are these sources? Are they hadron accelerators? extended hard spectra,    steady emission

36 General Active Galactic Nuclei (AGN): Supermassive black holes, M  10 9 M  accretion disk and relativistic jets Blazar-Typ: Jet points towards the earth Doppler-boost  TeV  -radiation 4) Extragalactic Sources: Blazars

37 E dN/dE Measurement of EBL (  Cosmology )  Physics of compact objects, acceleration/absorption in jets, … E dN/dE Absorption in (infrared) extragalactic background light (EBL)  (TeV) +  (EBL)  e + e - e+e+ e-e-  

38 Cut-off Energy and  -Ray Horizon Mrk421 Mrk501 1ES 1959  650 1ES 2344  514 PKS 2155  304 H1426  428 PKS 2005  489 EBL models adapted from Blanch & Martinez 2004 more on ICRC‘05 CANGAROO H.E.S.S. VERITAS MAGIC

39 5) X-Ray Binary LS 5039: The first TeV Micro-Quasar-Candidate Accretion from normal star on stellar-mass black hole  scaled-down AGN in our Galaxy Dynamics of accretion Jet production Acceleration of electrons vs. hadrons

40 H.E.S.S.-Discovery in Summer 2004 Galactic Plane Scan: 10.5 hours live time spread over 4 months  7   E   0.2 … 4 TeV  point-like steady at 15% c.l. hard spectrum   2.12  0.15 Acceleration of particles to ≳ 10 TeV established ! Sciencexpress, July 7 th, 2005

41 Summary Cosmic ray puzzle persists…but is under pressure by massive attack from EAS-arrays, - and  -telescopes Progress in understanding knee, ankle and GZK-region AUGER data disfavour small scale anisotropies Cosmic -detection in multi-messenger campaigns ? Neutrino astronomy might start sooner than expected ! Major break-through in TeV-  -astronomy  supernova shells are  100 TeV accelerators  large population of extended galactic TeV sources discovered  first microquasar-candidate established as  TeV accelerator  diffuse galactic TeV emission (Milagro water Č-telescope)  TeV-  from Active Galactic Nuclei at large red-shifts, …

42 AGN Black Holes Microquasars Gamma Ray Bursts Pulsars Dark Accelerators Supernovae The Cosmic Ray Source Cocktail ?


Download ppt "Cosmic Rays Gammas, Hadrons, Neutrinos Thomas Lohse Humboldt University Berlin HEP2005 International Europhysics Conference on High Energy Physics July."

Similar presentations


Ads by Google