Presentation is loading. Please wait.

Presentation is loading. Please wait.

HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28.

Similar presentations


Presentation on theme: "HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28."— Presentation transcript:

1 HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28

2 Mass Spectrum of Carbon Clusters Heath, Liu, O’Brien, Curl, Kroto and Smalley unpublished data C 28

3 Prediction C 28 tetravalent and should be stabilised by addition of four H atoms HK Nature 1987

4 Prediction: because strain released and four C 6 aromatic rings remain HK Nature 1987

5 C 28 should be a giant tetravalent “Superatom” H W K Nature, 329, 529 (1987)

6 Ti Properties of C 28 in detail starting with Ti@C 28 with Paul Dunk and Alan Marshall

7 U @ C 28 1993 U

8 NHMFL FSU Laser vaporization of a UO 2 -graphite target laser fired at different points in time along the pulse pressure profile U@C 28 is clearly seen to form before larger U@C n species U@C 28

9 Exxon Data Cox et al JACS 110 1588 (1988)

10

11 C 32

12 Endohedral Fullerene Comparison Spectra

13

14 Delft Buckyball Wkshp Dynamic Z

15 WOW Moment

16 Nori Shinohara - Nagoya Alan Marshall Dr. FT-ICR-MS Chris Hendrickson Nathan Kaiser Paul Dunk

17 Rice Group showed that under intense laser irradiation C 60 lost C 2 fragments sequentially and at C 32 blew up completely into small carbon species and atoms C 60 → C 58 → C 56 → → → → C 32 → C 2 C 2 C 2 C n (n small)

18

19 C 28 should be special - a tetravalent “Superatom” atom H W Kroto, Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28

20 Mass spectrum of laser vapourised graphite (Rice 1985) C 28

21 Sussex NNC

22 ~sp 3

23 Four Benzenoid aromatic rings remain

24 Exxon Data Cox et al JACS 110 1588 (1988) NB No C 22 possible!

25 http://www.orchidpalms.com/polyhedra/acrohedra/nearmiss/jsmn.htm

26 Sussex NNC

27 The structure proposed for C 28 contains four triple fused pentagons units arranged in tetrahedral symmetry.

28 Predicted stable and semi-stable Fullerenes image at: www.answers.com/topic/fullerenewww.answers.com/topic/fullerene C 28 C 32 C 50 C 60 C 70

29

30 Predicted stable and semi-stable Fullerenes image at: www.answers.com/topic/fullerenewww.answers.com/topic/fullerene C 28 C 32 C 50 C 60 C 70

31 C 28 should be tetravalent

32

33

34 U @ C 28 U

35 Ti @ C 28 Ti

36 Ti@Cn distribution (RED) vs. empty cage distribution (BLUE) for FIG (2). Clearly shows titanium has stabilized C 28, and other small fullerenes.

37 C 28 Sussex NNC

38 C 28 ”superatom” analogue of sp 3 carbon atom Suggests T d C 28 H 4 Nature 329 529 (1987) C 28 H 4

39 at: commons.wikimedia.org/wiki/File:Endohedral_fu... commons.wikimedia.org/wiki/File:Endohedral_fu... Endohedral Fullerenes can satisfy “valencies” internally

40 Titanium Rod – Positive ions M(C 28 ) + M(Ti) = 336 + 48 = 384 C 28 Ti Predicted

41 C 32 ca 50 milliDaltons separation Titanium Rod – Positive ions M(C 28 ) + M(Ti) = 336 + 48 = 384 M(C 32 ) = 384

42 Titanium Rod – Positive ions C 28 Ti Predicted Minus C 32 mass peaks

43 FT-ICR-MS relative intensities of Ti@C n vs n 24 28 32 36 40 44 48 n 100 80 60 40 20 0 Abundancerel units Ti@C 28 Ti@C 38 Paul Dunk with Harry Kroto and Alan Marshall Ti@C n vs n

44 (T d ) C 28 more stable by 717 kJmol -1 than D 2 (T d ) Ti@C 28 more stable by 270 kJmol -1 than D 2 David E. Bean, Patrick W. Fowler, University of Sheffield C 28 (D 2 )C 28 (T d )

45 image at: www.answers.com/topic/fullerene

46 C 28 ”superatom” analogue of sp 3 carbon atom Suggests T d C 28 H 4 Nature 329 529 (1987) C 28 H 4

47 at: commons.wikimedia.org/wiki/File:Endohedral_fu... commons.wikimedia.org/wiki/File:Endohedral_fu... Endohedral Fullerenes can satisfy “valencies” internally

48 FT-ICR-MS relative intensities of Ti@C n vs n 24 28 32 36 40 44 48 n 100 80 60 40 20 0 Abundancerel units Ti@C 28 Ti@C 38 Paul Dunk with Harry Kroto and Alan Marshall Ti@C n vs n

49 (T d ) C 28 more stable by 717 kJmol -1 than D 2 (T d ) Ti@C 28 more stable by 270 kJmol -1 than D 2 David E. Bean, Patrick W. Fowler, University of Sheffield C 28 (D 2 )C 28 (T d )

50 For the bare cages, the tetrahedral isomer is more stable by 0.273 a.u. (717 kJmol-1). When a titanium atom is encapsulated, this gap decreases to 0.103 a.u. (270 kJmol- 1), but the tetrahedral isomer remains the more stable. David E. Bean, Patrick W. Fowler, University of Sheffield C 28 (D 2 )C 28 (T d )

51 at: commons.wikimedia.org/wiki/File:Endohedral_fu... commons.wikimedia.org/wiki/File:Endohedral_fu...

52 image at: people.whitman.edu/~hoffman/people.whitman.edu/~hoffman/

53

54 Abundance of Endohedral Fullerenes Ti@C n vs n

55 24 28 32 36 40 44 48 n 100 80 60 40 20 0 Abundancerel units Ti@C 28 Ti@C 38

56 Some of the more stable members of the fullerene family. (a) C28. (b) C32. (c) C50. (d) C60. (e) C70. image at: www.answers.com/topic/fullerene

57 Abundance of Endohedral Fullerenes Ti@C n vs n 24 28 32 36 40 44 48 n 100 80 60 40 20 0 Abundancerel units Ti@C 28 Ti@C 38

58

59 For the bare cages, the tetrahedral isomer is more stable by 0.273 a.u. (717 kJmol-1). When a titanium atom is encapsulated, this gap decreases to 0.103 a.u. (270 kJmol- 1), but the tetrahedral isomer remains the more stable. David E. Bean, Patrick W. Fowler, University of Sheffield C 28 (D 2 )C 28 (T d )


Download ppt "HWK Nature, 329, 529 (1987) Polaroid image of the first molecular model of C 28 C 28."

Similar presentations


Ads by Google