Download presentation
Presentation is loading. Please wait.
Published byNoel Freeman Modified over 9 years ago
1
The new Y Chromosome Haplotype Reference Database (YHRD) and optimized approaches for the forensic Y-STR analysis Sascha Willuweit & Lutz Roewer Institut für Rechtsmedizin und Forensische Wissenschaften Charité – Universitätsmedizin Berlin 20002004 2008 2014 ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
2
Workshop schedule 2015, September 1st, 2:30 pm – 6:30 pm Different frequency estimation methods implemented in the YHRD Mixture analysis using the YHRD Kinship analysis using the YHRD Ancestry information retrievable from YHRD Subpopulation analysis (AMOVA) using YHRD Discussion of casework examples ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
3
YHRD - Increasing numbers
5
Frequency estimation ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
6
Frequency estimation methods Constant estimators Augmented counting (1/n+1) Counting with database inflation (Brenner‘s κ) Variable estimators Surveying method (Krawczak) Coalescence based estimation (Caliebe) Discrete Laplace method (Andersen) ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015 Enabled in YHRD
7
Frequency estimation for Y-STR profiles ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
9
23 loci 17 loci 9 loci Frequency estimation for rare haplotypes with „Kappa inflation“ (0 observations) Count Singletons with kappa ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015 19.593 71.246 55.675 3.0 x 10 -6 19.593 n.a. 125.700 30.450 6.0 x 10 -6 K=0.78 K=0.24 (1.4 x 10 -5 )* (7.9 x 10 -6 )* * counting - proportion of singletons estimator of the proportion of not sampled rare haplotypes in the database
10
©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
11
Comparison of estimators for rare haplotypes Discrete Laplace vs. counting, kappa and surveying methods using a simulated population of 1 million, with a database size of 1000 and a kappa proportion of singletons of =0.864 ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015 Courtesy of M.M. Andersen (Copenhagen)
12
Fig. 1 Comparison of (1) the relative frequency of a haplotype (number of times it has been observed divided by the database size) and (2) the estimated haplotype frequency using the discrete Laplace method. Note, that for frequently observed haplotypes, t... Mikkel Meyer Andersen, Poul Svante Eriksen, Niels Morling Cluster analysis of European Y-chromosomal STR haplotypes using the discrete Laplace method Forensic Science International: Genetics, Volume 11, 2014, 182 - 194 ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
13
Interpretation tools implemented in YHRD Mixture analysis (Frequency and LR based) Kinship calculation (Frequency and LR based) Population substructure (AMOVA, Fst/R st, MDS) Ancestry information (AI) ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
14
Mixture analysis ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
15
male mixture (major, minor component) only ♀ component no ♂ admixture in AMELOGENIN Autosomal analysisY chromosomal analysis Casework example Delict: sexual assault Evidence: contact stain on clothing ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
16
Analyse with Mixture analysis tool (partial Y23 profiles) ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
17
Result for PowerPlex Y23 (20 loci) ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
18
Reanalysis using reduced PPY12 profiles ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
19
Result for PowerPlex Y12 (10 loci) ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
20
Reanalysis using further reduced 9-locus minHt profiles ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
21
Result for minHt (7 loci) ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
22
Kinship ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
23
The Y chromosom - a linearly inherited, haploid marker system ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
24
For which cases? ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
25
Likelihood Calculation (LR) / Brotherhood (Probability for observing the haplotypes given same fathers vs. probability for observing the haplotypes given different fathers) L (X) = µ/2 x [f(A) + f(B)] L (Y) = f(A) x f(B) µ = mutation rate f = haplotype frequency (YHRD) Locus-spezific µ for one-step-mutations, see YHRD For the X hypothesis for each locus the probability of „non-mutation“ (1- µ) is also considered Rolf et al. (Int J. Legal Med. 2001); Buckleton et al. (CRC Press, 2005) AB Same or different fathers? ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
26
Brothers? Related: L(X) = 1.4 x 10 -4 x 1 x µ/2 + 2.3 x 10 -5 x 1 x µ/2 = 2.9 x 10 -7 Unrelated: L(Y) = 1.4 x 10 -4 x 2.3 x 10 -5 = 3.2 x 10 -9 LR (X/Y) = 91 14, 13, 31, 24, 11, 13, 14, 11-11, 14, 13 14, 13, 31, 25, 11, 13, 14, 11-11, 14, 13 µ = 3.6 x 10 -3 * f B = 2.3 x10 -5 * Meioses * YHRD f A = 1.4 x 10 -4 * AB Same or different fathers ? ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
27
L(X) = 1.4 x 10 -4 x 1 x µ/2 = 1.5 x 10 -7 L(Y) = 1.4 x 10 -4 x 2.3 x 10 -5 = 3.2 x 10 -9 LR (X/Y) = 46.8 14, 13, 31, 24, 11, 13, 14, 11-11, 14, 13 14, 13, 31, 24, 11, 14, 14, 11-11, 14, 13 µ = 2.1 x 10 -3 (moderate)* f B = 1.4 x 10 -4 * f A = 2.3 x10 -5 * * YHRD B A Father – son or unrelated ? Influence of the local mutation rate on LR ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
28
L(X) = 1.4 x 10 -4 x 1 x µ/2 = 8.4 x 10 -7 L(Y) = 1.4 x 10 -4 x 2.3 x 10 -5 = 3.2 x 10 -9 LR (X/Y) = 262.5 14, 13, 30, 24, 11, 13, 14, 11-12, 14, 13 14, 13, 30, 24, 11, 14, 14, 11-12, 14, 13 µ = 1.2 x 10 -2 (rapid)* B A f B = 1.4 x 10 -4 * f A = 2.3 x10 -5 * * YHRD Father – son or unrelated ? Influence of the local mutation rate on LR ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
29
Common ancestor? L(X) = 1.4 x 10 -4 x 7 x µ/2 + 2.3 x 10 -5 x 5 x µ/2 = 1.1 x 10 -6 L(Y) = 1.4 x 10 -4 x 2.3 x 10 -5 = 3.2 x 10 -9 LR (X/Y) = 343 14, 13, 31, 24, 11, 13, 13, 11-12, 14, 13 14, 13, 31, 24, 11, 14, 13, 11-12, 14, 13 µ = 2.1 x 10 -3 (moderate)* f obs = 1.4 x 10 -4 * f obs = 2.3 x10 -5 * Meioses * YHRD A B 7 5 ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
30
Common ancestor? L(X) = 1.4 x 10 -4 x 7 x µ/2 + 2.3 x 10 -5 x 5 x µ/2 = 6.6 x 10 -6 L(Y) = 1.4 x 10 -4 x 2.3 x 10 -5 = 3.2 x 10 -9 LR (X/Y) = 2053 14, 13, 31, 24, 11, 13, 13, 11-12, 14, 13 14, 13, 31, 24, 11, 14, 13, 11-12, 14, 13 µ = 1.2 x 10 -2 (rapid)* f obs = 1.4 x 10 -4 * f obs = 2.3 x10 -5 * Meioses * YHRD A B 7 5 ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
31
LociMutation Rate [95% CI]MeiosesPosition[MutRate]Group[MutRate] dys438 2,96E-04101221slow dys392 4,04E-04148672slow dys393 1,09E-03137133slow dys437 1,19E-03101014slow dys448 1,65E-0366785slow dys390 2,06E-03150616medium dys385 mc 2,30E-03256207medium dys19 2,32E-03155398medium ygatah4 2,47E-0377099medium dys391 2,54E-031493510medium dys389i 2,68E-031378811medium dys635 3,72E-03752512medium dys389ii 3,78E-031375913medium dys456 4,19E-03667814medium dys481 4,97E-03174415medium dys533 5.01E-03173016medium dys439 5,35E-031009617medium dys460 6,22E-03171718medium dys458 6,74E-03667719medium dys518 1,84E-02155620fast dyf387S1ab mc 1,59E-02180421fast dys576 1,43E-02172722fast dys570 1,24E-02142623fast dys627 1,23E-02176624fast dys449 1,22E-02161725fast ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015 Ranking of Y-STR mutation rates
32
©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
34
D A f (A) = 1/123* f (D) = 1/388** Likelihood Ratio (LR, KI) calculation for Y-STRs * Program uses counting (Discrete Laplace extrapolation: 1/311) ** Program uses counting (Discrete Laplace extrapolation: 1/821)
35
Population analysis (AMOVA) ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
36
YHRD: Test on population substructure (Fst, Rst) (Example: 17,278 Chinese individuals in 52 populations) ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
37
Ancestry information ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
38
Fast and slowly mutating Y markers Y-SNPs µ = 10 -9 - 10 -12 irreversible stable phylogeny Y-STRs µ = 10 -3 recurrent networks TCGAGGTATTAAC TCTAGGTATTAAC TCGAGGCATTAAC TCTAGGTGTTAAC TCGAGGTATTAGC TCTAGGTATCAAC * ** * * 17,13,30,25,10,11,13,10-14 16,13,30,25,10,11,13,10-14 17,13,31,25,10,11,13,10-14 17,13,30,24,10,11,13,10-14 17,13,30,25,10,11,13,11-14 17,13,29,25,10,11,13,10-15 17,13,30,26,10,11,13,10-14 17,13,30,25,10,11,14,10-14 17,13,30,25,11,11,13,10-14 Time 521521 324324 ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
39
Roewer et al. Hum Genet 2005 ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015 Y-STR gradients (7 loci)
40
Y-SNP gradients (R1a) Fechner et al., Am J Phys Anthropology 2008 ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
41
Semino et al. 2004 (n = 2400) Haplogroup J2a Haplotype: 14,13,30,22,10,11,12,13-16,... Is ancestry prediction possible? Biogeographical analysis using Y doesn‘t predict nationality residency or phenotype Y markers infer very useful information the deep ancestry of a paternal lineage and its proliferation (radiation) over time until today Skeleton in a trolley, 5g femur extracted ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015 37 Y marker analysis (Geppert et al. 2010)
42
©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015 Unknown skeletonized person – extract, type, search and add „ancestry information“
43
©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015 Ancestry information – three features and heat map
44
©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015 Heat Map (searched haplotypes are reduced to the most representatively sampled minHt)
45
©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015 Searched haplotype is compared with a database of STR+SNP typed samples
46
Hg prediction is prone to IBS errors (as evidenced by YHRD)! Mandatory: Y-SNP analysis using (mini)sequencing SNaPshot method (Hierarchical Multiplex Analysis) Geppert M & Roewer L (2012) SNaPshot® minisequencing analysis of multiple ancestry- informative Y-SNPs using capillary electrophoresis. Methods Mol Biol. 830:127-40. J2a Turkey, Fertile Crescent, Caucasus, Mediterranean ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
47
„Most frequent neighbour“ - 15,13,29,22,10,11,12,15-16 – 22 matches 15,13,30,22,10,11,12,15-16 – 2 matches to YHRD Legende: Each dot is one population sample (on average 120 individuals) with matching populations marked in red ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015 CAVE!
48
But: SNaPshot analysis Haplogroup E-M2 highest frequency in West Africa (~ 80%) and Central Africa (~ 60%), not India Discrepancy between YSTR and YSNP distribution! ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015
49
Part II: Casework examples ©Charité – Universitätsmedizin Berlin, Dept. Forensic Genetics 2015 Frequency estimation Mixture Kinship Ancestry
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.