Download presentation
Presentation is loading. Please wait.
Published byDelphia Potter Modified over 9 years ago
2
Large-Scale Structure & Surveys Max Tegmark, MIT
3
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Onion Tegmark 2002, Science, 296, 1427-33 Summary of last lecture
4
Fluctuation generator Fluctuation amplifier (Graphics from Gary Hinshaw/WMAP team) Hot Dense Smooth Cool Rarefied Clumpy Summary of last lecture 400
5
SN Ia+CMB+LSS constraints Yun Wang & MT 2004, PRL 92, 241302 Assumes k=0 Vanilla rules OK! 0th order: what we’ve learned about our expansion history Summary of last lecture
6
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Ly LSS Clusters Lensing Tegmark & Zaldarriaga, astro-ph/0207047 + updates CMB 1st order: what we’ve learned about cosmic clustering Summary of last lecture
7
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 1st order: what we’ve learned about cosmic clustering Summary of last lecture
8
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 000619 DO ANY OF THESE QUESTIONS CONFUSE YOU? 1. What is the Universe expanding into? 2. How can stuff be more than 14 billion light years away when the Universe is only 14 billion light years old? 3. Where in space did the Big Bang explosion happen? 4. Did the Big Bang happen at a single point? 5. How could a the Big Bang create an infinite space in a finite time? 6. How could space not be infinite? 7. If the Universe is only 10 billion years old, how can we see objects that are now 30 billion light years away? 8. Don’t galaxies receeding faster than c violate relativity theory? 9. Are galaxies really moving away from us, or is space just expanding? 10. Is the Milky Way expanding? 11. Do we have evidence for a Big Bang singularity? 12. What came before the Big Bang? 13.Should I feel insignificant?
9
The cosmic plan: Survey of cosmology basics Measuring large-scale structure with galaxy surveys Measuring large-scale structure neutral hydrogen L1: L3: L2:
10
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Springel, Frenk & White 2006, Nature, 440, 11
11
Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1
12
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS de Lapparent, Geller & Huchra 1986
13
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
14
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
15
Cmbgg OmOl LSS
16
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Galaxy power spectrum measurements 1999 (Based on compilation by Michael Vogeley)
17
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 PSCz 15000 gals: (Data points uncorrelated) (Hamilton, Tegmark & Padmanabhan 2000)
18
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 SDSS 2006: 2dFGRS 250000 gals SDSS DR4 400000 gals, now ~10 6 gals
19
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 APO SDSS
20
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 SDSS Zoom SDSS
21
Cmbgg OmOl
22
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 (Table from Natalie Roe) SOME SURVEYS TO LOOK FORWARD TO:
23
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LAMOST: The Large Sky Area Multi-Object Fibre Spectroscopic Telescope
24
Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1
25
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Why are LRGs so useful?
26
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 History CMB Foreground-cleaned WMAP map from Tegmark, de Oliveira-Costa & Hamilton, astro-ph/0302496 Our observable universe
27
LSS Our observable universe
28
LSS Our observable universe
29
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS Quasars
30
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS LRG’s
31
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS Common galaxies
32
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS Common gals: too dense Quasars: too sparse LRG’s: just right! Why LRG’s are “Goldilocks galaxies”: 60000 LRG’s have more statistical power than 2 million regular gals
33
Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities Measuring large-scale structure with galaxy surveys: what are the challenges? P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1
34
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Sky coverage of SDSS DR4 redshift survey (Aitoff projection, equatorial coordinates) (Dust map fromSchlegel, Finkbeiner & Davis)
35
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl
36
Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1
37
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
38
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 MT, Hamilton, Strauss, Vogeley & Szalay 1998 SDSS
39
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
40
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
41
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
42
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
43
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
44
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
45
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
46
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
47
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
48
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
49
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
50
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
51
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
52
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
53
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
54
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
55
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
56
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Sky coverage of SDSS DR4 redshift survey (Aitoff projection, equatorial coordinates) (Dust map fromSchlegel, Finkbeiner & Davis)
57
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010
58
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Bias
59
Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1
60
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Virgo LCDM simulation CMB
61
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 SDSS galaxies CMB
62
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
63
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
64
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
65
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
66
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
67
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
68
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
69
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS Lum funcs & sel funcs by Michael Blanton (NYU)
70
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl LSS
71
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl LSS
72
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 Cmbgg OmOl LSS
73
Molly Swanson, MT, Mike Blanton, Idit Zehavi: arXiv: 0702584
75
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
76
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
77
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
78
Max Tegmark Dept. of Physics, MIT tegmark@mit.edu Cosmologia en la Playa January 11-15, 2010 LSS
79
Measuring large-scale structure with galaxy surveys: what are the challenges? Statistical errors - Sample variance: want big V - Shot noise: want large n Systematic errors - Dust extinction (angular selection function) - Radial selection function errors Data analysis - Survey geometry (window functions) - Numerical challenges Linking light to mass: - bias - redshift distortions - nonlinearities P ~ N -1/2 (P+n -1 ) N ~ V k^3 So aim for as large V as possible with nP~1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.