Download presentation
Presentation is loading. Please wait.
Published byNoel Hampton Modified over 9 years ago
1
Dr. Wolf's CHM 201 & 202 16-51 16.10 Conversion of Vicinal Halohydrins to Epoxides
2
Dr. Wolf's CHM 201 & 202 16-52H OHOHOHOH Br H NaOH H2OH2OH2OH2O (81%) H H O ExampleExample
3
Dr. Wolf's CHM 201 & 202 16-53 O Br H H –H OHOHOHOH Br H NaOH H2OH2OH2OH2O (81%) H H O ExampleExample via:
4
Dr. Wolf's CHM 201 & 202 16-54 anti addition Epoxidation via Vicinal Halohydrins Br 2 H2OH2OH2OH2O OHOHOHOH Br
5
Dr. Wolf's CHM 201 & 202 16-55 anti addition inversion Epoxidation via Vicinal Halohydrins Br 2 H2OH2OH2OH2O OHOHOHOH NaOH corresponds to overall syn addition of oxygen to the double bond Br O
6
Dr. Wolf's CHM 201 & 202 16-56 anti addition inversion Epoxidation via Vicinal Halohydrins Br 2 H2OH2OH2OH2O OHOHOHOH NaOH corresponds to overall syn addition of oxygen to the double bond Br H H3CH3CH3CH3C CH 3 O H H H3CH3CH3CH3C H
7
Dr. Wolf's CHM 201 & 202 16-57 anti addition inversion Epoxidation via Vicinal Halohydrins Br 2 H2OH2OH2OH2O OHOHOHOH NaOH corresponds to overall syn addition of oxygen to the double bond Br H H3CH3CH3CH3C CH 3 O H H H3CH3CH3CH3C H H H3CH3CH3CH3C H
8
Dr. Wolf's CHM 201 & 202 16-58 16.11 Reactions of Epoxides: A Review and a Preview
9
Dr. Wolf's CHM 201 & 202 16-59 All reactions involve nucleophilic attack at carbon and lead to opening of the ring. An example is the reaction of ethylene oxide with a Grignard reagent (discussed in Section 15.4 as a method for the synthesis of alcohols). Reactions of Epoxides
10
Dr. Wolf's CHM 201 & 202 16-60 Reaction of Grignard Reagents with Epoxides CH 2 OMgX H3O+H3O+H3O+H3O+ H2CH2CH2CH2C O RMgXR RCH 2 CH 2 OH
11
Dr. Wolf's CHM 201 & 202 16-61 H2CH2CH2CH2C CH 2 O + 1. diethyl ether 2. H 3 O + (71%) ExampleExample CH 2 MgCl CH 2 CH 2 CH 2 OH
12
Dr. Wolf's CHM 201 & 202 16-62 Reactions of epoxides involve attack by a nucleophile and proceed with ring-opening. For ethylene oxide: Nu—H + Nu—CH 2 CH 2 O—H H2CH2CH2CH2C CH 2 O In general...
13
Dr. Wolf's CHM 201 & 202 16-63 For epoxides where the two carbons of the ring are differently substituted: In general... CH 2 O CRH Nucleophiles attack here when the reaction is catalyzed by acids: Anionic nucleophiles attack here:
14
Dr. Wolf's CHM 201 & 202 16-64 16.12 Nucleophilic Ring-Opening Reactions of Epoxides
15
Dr. Wolf's CHM 201 & 202 16-65 NaOCH 2 CH 3 CH 3 CH 2 OH (50%) ExampleExample O H2CH2CH2CH2C CH 2 CH 3 CH 2 O CH 2 CH 2 OH
16
Dr. Wolf's CHM 201 & 202 16-66 O H2CH2CH2CH2C CH 2 CH 3 CH 2 O –Mechanism
17
Dr. Wolf's CHM 201 & 202 16-67 O H2CH2CH2CH2C CH 2 CH 3 CH 2 O –– CH 3 CH 2 O CH 2 CH 2 O Mechanism
18
Dr. Wolf's CHM 201 & 202 16-68 O H2CH2CH2CH2C CH 2 CH 3 CH 2 O –– CH 3 CH 2 O CH 2 CH 2 O O CH 2 CH 3 H Mechanism
19
Dr. Wolf's CHM 201 & 202 16-69 O H2CH2CH2CH2C CH 2 CH 3 CH 2 O –– CH 3 CH 2 O CH 2 CH 2 O CH 3 CH 2 O CH 2 CH 2 O H O CH 2 CH 3 – O CH 2 CH 3 H Mechanism
20
Dr. Wolf's CHM 201 & 202 16-70 (99%) ExampleExample O H2CH2CH2CH2C CH 2 KSCH 2 CH 2 CH 2 CH 3 ethanol-water, 0°C CH 2 CH 2 OH CH 3 CH 2 CH 2 CH 2 S
21
Dr. Wolf's CHM 201 & 202 16-71 StereochemistryStereochemistry Inversion of configuration at carbon being attacked by nucleophile Suggests S N 2-like transition state NaOCH 2 CH 3 CH 3 CH 2 OH O HHH OHOHOHOH H OCH 2 CH 3 (67%)
22
Dr. Wolf's CHM 201 & 202 16-72 NH 3 H2OH2OH2OH2O (70%) R S R R StereochemistryStereochemistry H3CH3CH3CH3C CH 3 H3CH3CH3CH3C O H H H H OH H2NH2NH2NH2N Inversion of configuration at carbon being attacked by nucleophile Suggests S N 2-like transition state
23
Dr. Wolf's CHM 201 & 202 16-73 NH 3 H2OH2OH2OH2O (70%) ++++ ---- R S R R StereochemistryStereochemistry H3CH3CH3CH3C CH 3 H3CH3CH3CH3C O H H H H OH H2NH2NH2NH2N H3NH3NH3NH3N O H3CH3CH3CH3C H H3CH3CH3CH3C H
24
Dr. Wolf's CHM 201 & 202 16-74 NaOCH 3 CH 3 OH CH 3 CH CCH 3 CH 3 OHOHOHOH CH 3 O (53%) C C H H3CH3CH3CH3C CH 3 O consistent with S N 2-like transition state Anionic nucleophile attacks less-crowded carbon
25
Dr. Wolf's CHM 201 & 202 16-75 Anionic nucleophile attacks less-crowded carbon 1. diethyl ether 2. H 3 O + MgBr + O H2CH2CH2CH2C CHCH 3 CH 2 CHCH 3 OHOHOHOH (60%)
26
Dr. Wolf's CHM 201 & 202 16-76 (90%) Hydride attacks less-crowded carbon Lithium aluminum hydride reduces epoxides O H2CH2CH2CH2C CH(CH 2 ) 7 CH 3 1. LiAlH 4, diethyl ether 2. H 2 O OHOHOHOH H3CH3CH3CH3C CH(CH 2 ) 7 CH 3
27
Dr. Wolf's CHM 201 & 202 16-77 16.13 Acid-Catalyzed Ring-Opening Reactions of Epoxides
28
Dr. Wolf's CHM 201 & 202 16-78 ExampleExample O H2CH2CH2CH2C CH 2 CH 3 CH 2 OCH 2 CH 2 OH (87-92%) CH 3 CH 2 OCH 2 CH 2 OCH 2 CH 3 formed only on heating and/or longer reaction times CH 3 CH 2 OH H 2 SO 4, 25°C
29
Dr. Wolf's CHM 201 & 202 16-79 ExampleExample O H2CH2CH2CH2C CH 2 HBr 10°C BrCH 2 CH 2 OH (87-92%) BrCH 2 CH 2 Br formed only on heating and/or longer reaction times
30
Dr. Wolf's CHM 201 & 202 16-80 Mechanism O H2CH2CH2CH2C CH 2 + H Br – O H2CH2CH2CH2C CH 2 H Br
31
Dr. Wolf's CHM 201 & 202 16-81 Mechanism O H2CH2CH2CH2C CH 2 + H O Br CH 2 CH 2 H Br – O H2CH2CH2CH2C CH 2 H Br
32
Dr. Wolf's CHM 201 & 202 16-82 Figure 16.6 Acid-Catalyzed Hydrolysis of Ethylene Oxide O H2CH2CH2CH2C CH 2 + H O H2CH2CH2CH2C CH 2 O HHH + O H H Step 1
33
Dr. Wolf's CHM 201 & 202 16-83 Figure 16.6 Acid-Catalyzed Hydrolysis of Ethylene Oxide O H2CH2CH2CH2C CH 2 O +HH H Step 2 + O O CH 2 CH 2 HH H
34
Dr. Wolf's CHM 201 & 202 16-84 Figure 16.6 Acid-Catalyzed Hydrolysis of Ethylene Oxide O HH Step 3 + O O CH 2 CH 2 HH H O HH + H O O CH 2 CH 2 HH
35
Dr. Wolf's CHM 201 & 202 16-85 Acid-Catalyzed Ring Opening of Epoxides nucleophile attacks more substituted carbon of protonated epoxide inversion of configuration at site of nucleophilic attack Characteristics:
36
Dr. Wolf's CHM 201 & 202 16-86 CH 3 OH CH 3 CH CCH 3 CH 3 OHOHOHOH OCH 3 (76%) C C H H3CH3CH3CH3C CH 3 O consistent with carbocation character at transition state Nucleophile attacks more-substituted carbon H 2 SO 4
37
Dr. Wolf's CHM 201 & 202 16-86b CH 3 OH CH 3 CH CCH 3 CH 3 OHOHOHOH OCH 3 (76%) C H H3CH3CH3CH3C CH 3 OHOHOHOH consistent with carbocation character at transition state Nucleophile attacks more-substituted carbon H 2 SO 4 C ++ ++ ++
38
Dr. Wolf's CHM 201 & 202 16-87 StereochemistryStereochemistry Inversion of configuration at carbon being attacked by nucleophile (73%) HHO HBr H OHOHOHOH Br H
39
Dr. Wolf's CHM 201 & 202 16-88 (57%) R S R R StereochemistryStereochemistry H3CH3CH3CH3C CH 3 H3CH3CH3CH3C O H H H H OH CH 3 O Inversion of configuration at carbon being attacked by nucleophile CH 3 OH H 2 SO 4
40
Dr. Wolf's CHM 201 & 202 16-89 R S R R StereochemistryStereochemistry H3CH3CH3CH3C CH 3 H3CH3CH3CH3C O H H H H OH CH 3 O CH 3 OH H 2 SO 4 ++++ ++++ CH 3 O O H3CH3CH3CH3C H H3CH3CH3CH3C H H ++++ H
41
Dr. Wolf's CHM 201 & 202 16-90 H2OH2OH2OH2O HClO 4 (80%) anti-Hydroxylation of Alkenes HH CH 3 COOH O HHO H OHOHOHOH OH H
42
Dr. Wolf's CHM 201 & 202 16-91 16.14 Epoxides in Biological Processes
43
Dr. Wolf's CHM 201 & 202 16-92 are common are involved in numerous biological processes Naturally Occurring Epoxides
44
Dr. Wolf's CHM 201 & 202 16-93 enzyme-catalyzed oxygen transfer from O 2 to alkene enzymes are referred to as monooxygenases Biosynthesis of Epoxides + + C C ++ O2O2O2O2 H+H+H+H+ C C O NADH H2OH2OH2OH2O + NAD + enzyme
45
Dr. Wolf's CHM 201 & 202 16-94 this reaction is an important step in the biosynthesis of cholesterol Example: biological epoxidation of squalene O 2, NADH monoxygenase O
46
Dr. Wolf's CHM 201 & 202 16-95 16.15 Preparation of Sulfides
47
Dr. Wolf's CHM 201 & 202 16-96 prepared by nucleophilic substitution (S N 2) Preparation of RSR' +R'XS R – R S R' CH 3 CHCH CH 2 Cl NaSCH 3 methanol CH 3 CHCH CH 2 SCH 3
48
Dr. Wolf's CHM 201 & 202 16-97 16.16 Oxidation of Sulfides: Sulfoxides and Sulfones
49
Dr. Wolf's CHM 201 & 202 16-98 either the sulfoxide or the sulfone can be isolated depending on the oxidizing agent and reaction conditions Oxidation of RSR' R S R' R S R' O –+ R S R' O – ++O – sulfidesulfoxidesulfone
50
Dr. Wolf's CHM 201 & 202 16-99 ExampleExample SCH 3 NaIO 4 SCH 3 O –+ Sodium metaperiodate oxidizes sulfides to sulfoxides and no further. (91%) water
51
Dr. Wolf's CHM 201 & 202 16-100 ExampleExample H2O2H2O2H2O2H2O2 1 equiv of H 2 O 2 or a peroxy acid gives a sulfoxide, 2 equiv give a sulfone (74-78%) (2 equiv) SCH CH 2 SCH O –++ CH 2 O –
52
Dr. Wolf's CHM 201 & 202 16-101 16.17 Alkylation of Sulfides: Sulfonium Salts
53
Dr. Wolf's CHM 201 & 202 16-102 product is a sulfonium salt Sulfides can act as nucleophiles + R" X S R R S R" R'R' + X–X–X–X–
54
Dr. Wolf's CHM 201 & 202 16-103 ExampleExample CH 3 (CH 2 ) 10 CH 2 SCH 3 CH 3 I CH 3 (CH 2 ) 10 CH 2 SCH 3 CH 3 + I–I–I–I–
55
Dr. Wolf's CHM 201 & 202 16-104 Section 16.18 Spectroscopic Analysis of Ethers
56
Dr. Wolf's CHM 201 & 202 16-105 C—O stretching: 1070 and 1150 cm -1 (strong) Infrared Spectroscopy
57
Dr. Wolf's CHM 201 & 202 16-106200035003000250010001500500 Wave number, cm -1 Figure 16.8 Infrared Spectrum of Dipropyl Ether C—O—C CH 3 CH 2 CH 2 OCH 2 CH 2 CH 3
58
Dr. Wolf's CHM 201 & 202 16-107 H—C—O proton is deshielded by O; range is ca. 3.3-4.0 ppm. 1 H NMR CH 3 CH 2 CH 2 OCH 2 CH 2 CH 3 0.8 ppm 1.4 ppm 3.2 ppm
59
Dr. Wolf's CHM 201 & 202 16-108 01.02.03.04.05.06.07.08.09.010.0 Chemical shift ( , ppm) CH 3 CH 2 CH 2 OCH 2 CH 2 CH 3
60
Dr. Wolf's CHM 201 & 202 16-109 68.0 ppm Carbons of C—O—C appear in the range 57-87 ppm. 26.0 ppm 13 C NMR O
61
Dr. Wolf's CHM 201 & 202 16-110 Simple ethers have their absorption maximum at about 185 nm and are transparent to ultraviolet radiation above about 220 nm. UV-VISUV-VIS
62
Dr. Wolf's CHM 201 & 202 16-111 Molecular ion fragments to give oxygen-stabilized carbocation. m/z 102 CH 3 CH 2 O CHCH 2 CH 3 CH 3 CH 3 CH 2 O + CH CH 3 CH 3 CH 2 O + CHCH 2 CH 3 m/z 87 m/z 73 Mass Spectrometry +
63
End of Chapter 16
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.