Download presentation
Presentation is loading. Please wait.
Published byKathleen Day Modified over 9 years ago
1
ETH Zurich – Distributed Computing – www.disco.ethz.ch Klaus-Tycho Förster, Rijad Nuridini, Jara Uitto, Roger Wattenhofer Lower Bounds for the Capture Time: Linear, Quadratic, and Beyond
2
How to catch a robber on a graph? The game of Cops and Robbers
3
The rules of the game
4
The Cop is placed first C
5
The Robber may then choose a placement CR
6
Next, they alternate in moves CR
7
CR
8
CR
9
CR
10
The Cop won! C
11
C
12
How many moves does the cop need?
13
Catch multiple? RRRC
14
Upper bound to catch ℓ robbers
15
Lower bound to catch ℓ robbers … …
16
C … …
17
CR R R … …
18
CR R R … …
19
CR R R … …
20
R CR R … …
21
R CR R … …
22
CR R R … …
23
CR R R … …
24
R CR R … …
25
R C R … …
26
R C … …
27
R C … …
28
CR R … …
29
Summary so far
30
What about multiple cops and one robber?
31
Let’s start with two cops and one robber …
32
R C C … one cop not enough
33
Let’s start with two cops and one robber C R C …
34
Beyond two cops? … ??
36
Multiple cops and one robber …
37
Summary so far
38
What about multiple cops and multiple robbers?
39
Are we done? Multiple cops and multiple robbers … … … …
40
… … … …
41
… … … … C Prevents robbers from crossing
42
C ……
43
C ……
44
C
45
C
46
C
47
Construction of the ring … … …… …
48
Robber placement Robbers choose side with less cops R R R
49
Robber strategy R R R
50
R R R
51
R R R C Can catch half of the robbers!
52
Robber strategy R R R C
53
R R R C
54
R R R C
55
R R R C
56
Summary
57
ETH Zurich – Distributed Computing – www.disco.ethz.ch Klaus-Tycho Förster, Rijad Nuridini, Jara Uitto, Roger Wattenhofer Lower Bounds for the Capture Time: Linear, Quadratic, and Beyond
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.