Presentation is loading. Please wait.

Presentation is loading. Please wait.

BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence.

Similar presentations


Presentation on theme: "BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence."— Presentation transcript:

1 BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence G. Mitchell Martha R. Taylor From PowerPoint ® Lectures for Biology: Concepts & Connections CHAPTER 9 Patterns of Inheritance Modules 9.1 – 9.10

2 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Genetics is the science of heredity These black Labrador puppies are purebred— their parents and grandparents were black Labs with very similar genetic makeups –Purebreds often suffer from serious genetic defects Purebreds and Mutts — A Difference of Heredity

3 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The parents of these puppies were a mixture of different breeds –Their behavior and appearance is more varied as a result of their diverse genetic inheritance

4 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The science of heredity dates back to ancient attempts at selective breeding Until the 20th century, however, many biologists erroneously believed that –characteristics acquired during lifetime could be passed on –characteristics of both parents blended irreversibly in their offspring MENDEL’S PRINCIPLES 9.1 The science of genetics has ancient roots

5 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The inheritance of acquired characters (or characteristics) is the hereditary mechanism by which changes in physiology acquired over the life of an organism (such as muscle enlarged through use) are purportedly transmitted to offspring. It is also commonly referred to as the theory of adaptation equated with the evolutionary theory of French naturalist Jean-Baptiste Lamarck (1744-1829).adaptationFrench naturalistJean-Baptiste Lamarck

6 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Genetic Disproof There are many formulations of the genetic disproof, but all have roughly the same structure as the following: Acquired traits do not affect an organism's genome. genome Only the genome is passed to the offspring. Therefore, acquired traits cannot be passed to the offspring.

7 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Modern genetics began with Gregor Mendel’s quantitative experiments with pea plants 9.2 Experimental genetics began in an abbey garden Figure 9.2A, B Stamen Carpel

8 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Mendel crossed pea plants that differed in certain characteristics and traced the traits from generation to generation Figure 9.2C This illustration shows his technique for cross-fertilization 1 Removed stamens from purple flower White Stamens Carpel Purple PARENTS (P) OFF- SPRING (F 1 ) 2 Transferred pollen from stamens of white flower to carpel of purple flower 3 Pollinated carpel matured into pod 4 Planted seeds from pod

9 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Mendel studied seven pea characteristics Figure 9.2D He hypothesized that there are alternative forms of genes (although he did not use that term), the units that determine heredity FLOWER COLOR FLOWER POSITION SEED COLOR SEED SHAPE POD SHAPE POD COLOR STEM LENGTH PurpleWhite AxialTerminal YellowGreen RoundWrinkled InflatedConstricted GreenYellow TallDwarf

10 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings From his experimental data, Mendel deduced that an organism has two genes (alleles) for each inherited characteristic –One characteristic comes from each parent 9.3 Mendel’s principle of segregation describes the inheritance of a single characteristic P GENERATION (true-breeding parents) F 1 generation F 2 generation Purple flowersWhite flowers All plants have purple flowers Fertilization among F1 plants (F 1 x F 1 ) 3 / 4 of plants have purple flowers 1 / 4 of plants have white flowers Figure 9.3A

11 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings A sperm or egg carries only one allele of each pair –The pairs of alleles separate when gametes form –This process describes Mendel’s law of segregation –Alleles can be dominant or recessive GENETIC MAKEUP (ALLELES) P PLANTS F 1 PLANTS (hybrids) F 2 PLANTS PPpp All PAll p All Pp 1/2 P1/2 P 1/2 p1/2 p Eggs P p P PP p Sperm Pp pp Gametes Phenotypic ratio 3 purple : 1 white Genotypic ratio 1 PP : 2 Pp : 1 pp Figure 9.3B

12 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Alternative forms of a gene (alleles) reside at the same locus on homologous chromosomes 9.4 Homologous chromosomes bear the two alleles for each characteristic GENE LOCI Figure 9.4 PaB DOMINANT allele RECESSIVE allele Pab GENOTYPE:PPaaBb HOMOZYGOUS for the dominant allele HOMOZYGOUS for the recessive allele HETEROZYGOUS

13 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings By looking at two characteristics at once, Mendel found that the alleles of a pair segregate independently of other allele pairs during gamete formation –This is known as the principle of independent assortment 9.5 The principle of independent assortment is revealed by tracking two characteristics at once

14 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 9.5A HYPOTHESIS: DEPENDENT ASSORTMENT HYPOTHESIS: INDEPENDENT ASSORTMENT P GENERATION F 1 GENERATION F 2 GENERATION RRYYrryy GametesRY Yellow round ry RrYy EggsSpermRY ry RY ry 1/21/2 1/21/2 1/21/2 1/21/2 Actual results contradict hypothesis RRYYrryy RY ry Gametes RrYy EggsRY rY 1/41/4 1/41/4 Ry ry 1/41/4 1/41/4 RY rY Ry ry 1/41/4 1/41/4 1/41/4 1/41/4 RRYY RrYY RRYyrrYYRrYy rrYyRRyyrrYy Rryy rryy 9 / 16 3 / 16 1 / 16 Green round Yellow wrinkled Yellow wrinkled ACTUAL RESULTS SUPPORT HYPOTHESIS

15 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Independent assortment of two genes in the Labrador retriever Figure 9.5B PHENOTYPES Black coat, normal vision B_N_ Blind GENOTYPES MATING OF HETEROZYOTES (black, normal vision) PHENOTYPIC RATIO OF OFFSPRING Black coat, blind (PRA) B_nn Chocolate coat, normal vision bbN_ Chocolate coat, blind (PRA) bbnn 9 black coat, normal vision 3 black coat, blind (PRA) 3 chocolate coat, normal vision 1 chocolate coat, blind (PRA) Blind BbNn

16 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The offspring of a testcross often reveal the genotype of an individual when it is unknown 9.6 Geneticists use the testcross to determine unknown genotypes TESTCROSS: B_GENOTYPESbb BBBbor Two possibilities for the black dog: GAMETES OFFSPRING All black1 black : 1 chocolate B b B b b Bb bb Figure 9.6

17 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Inheritance follows the rules of probability –The rule of multiplication and the rule of addition can be used to determine the probability of certain events occurring 9.7 Mendel’s principles reflect the rules of probability F 1 GENOTYPES Bb female F 2 GENOTYPES Formation of eggs Bb male Formation of sperm 1/21/2 1/21/2 1/21/2 1/21/2 1/41/4 1/41/4 1/41/4 1/41/4 BB BB B B b b b b bb Figure 9.7

18 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings The inheritance of many human traits follows Mendel’s principles and the rules of probability 9.8 Connection: Genetic traits in humans can be tracked through family pedigrees Figure 9.8A

19 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Family pedigrees are used to determine patterns of inheritance and individual genotypes Figure 9.8B Dd Joshua Lambert Dd Abigail Linnell D_ Abigail Lambert Female Dd Elizabeth Eddy D_ John Eddy ?D_ Hepzibah Daggett ? ? ddDd ddDd Male Deaf Hearing dd Jonathan Lambert

20 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Most such disorders are caused by autosomal recessive alleles –Examples: cystic fibrosis, sickle-cell disease 9.9 Connection: Many inherited disorders in humans are controlled by a single gene Figure 9.9A DD dd Normal Dd Normal Dd DD Normal Dd Normal (carrier) Dd Normal (carrier) dd Deaf EggsSperm PARENTS OFFSPRING

21 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings A few are caused by dominant alleles Figure 9.9B –Examples: achondroplasia, Huntington’s disease

22 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Table 9.9

23 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Karyotyping and biochemical tests of fetal cells and molecules can help people make reproductive decisions –Fetal cells can be obtained through amniocentesis 9.10 Connection: Fetal testing can spot many inherited disorders early in pregnancy Figure 9.10A Amniotic fluid Fetus (14-20 weeks) Placenta Amniotic fluid withdrawn Centrifugation Fetal cells Fluid UterusCervix Cell culture Several weeks later Karyotyping Biochemical tests

24 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Chorionic villus sampling is another procedure that obtains fetal cells for karyotyping Figure 9.10B Fetus (10-12 weeks) Placenta Chorionic villi Suction Several hours later Fetal cells (from chorionic villi) Karyotyping Some biochemical tests

25 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Examination of the fetus with ultrasound is another helpful technique Figure 9.10C, D


Download ppt "BIOLOGY CONCEPTS & CONNECTIONS Fourth Edition Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Neil A. Campbell Jane B. Reece Lawrence."

Similar presentations


Ads by Google