Download presentation
Presentation is loading. Please wait.
Published byDamon McKenzie Modified over 9 years ago
1
Linking Transitions (and Search for Superintruders) in the A 80 Region of Superdeformation Nilsson Conf. Lund, Sweden 17 June 2005 C. J. Chiara, D. G. Sarantites, M. Montero, J. O’Brien, O. L. Pechenaya, and W. Reviol, Washington University R. M. Clark, P. Fallon, A. Görgen, A. O. Macchiavelli, and D. Ward, Lawrence Berkeley National Laboratory W. Satuła, University of Warsaw Y. R. Shimizu, Kyushu University
2
SD regionsSD regions A 40 (linked) A 60 (linked) A 190 (linked) A 80 (not linked!) B. Singh, R. Zywina, R.B. Firestone, Nucl. Data Sheets 97, 241 (2002) F. Lerma et al., PRC 67, 044310 (2003) 84 Zr (linked) A 130 TSD (linked) A 150 (linked)
3
140-MeV 32 S + 0.5-mg/cm 2 58 Ni 84 Zr + 2p Gammasphere [102 Ge detectors] Microball [95 CsI(Tl) detectors] for charged particle detection; p 80%, 70% Total of 2.2 10 9 events of fold 5 or higher over 6 days. Experimental details
4
Double-gated spectra of 84 Zr links spectraspectra
5
84Zr lev.sch.84Zr lev.sch. I 0 = 25 - E1 M1/E2 E1
6
Compare with calculations using Cranked Strutinsky + Lipkin-Nogami pairing 5 2 5 1 configuration previously assigned to SD1 based on Q t —now compare E x, I as well: CSLNCSLN E x (near ND-SD crossing) spin (except at alignments) parity
7
Depopulation of the SD well SD1 in 84 Zr has weak decays to ND states, similar to the A=150,190 SD bands. 84 Zr 152 Dy *192 Pb † * T.Lauritsen, PRL88, 042501 (2002) † A.N.Wilson, PRL90, 142501 (2003) B(E1) ~10 -6 W.u.~10 -6 W.u. ~10 -7 -10 -8 W.u.
8
Weak decay-out explored with several statistical models, e.g.: E.Vigezzi et al., PLB249,163 (1990) J.-z.Gu and H.A.Weidenmüller, NPA660, 197 (1999) D.M.Cardamone et al., PRL91, 102502 (2003) Each relates S, N, d, F S with spreading width . Compare 84 Zr with results in A.N.Wilson, Prog. Theor. Phys. (Kyoto), Suppl. 154, 138 (2004) : nuclideII FSFS / S [eV] 192 Pb10 + 0.12 1.1 10 7 511 12 + 0.66 9.8 10 4 13 194 Pb 8 + 0.65 2.0 10 4 0.28 10 + 0.9 3.3 10 3 0.15 194 Hg12 + 0.58 2.6 10 2 0.025 152 Dy28 + 0.6 6.0 10 2 6 84 Zr25 - < 0.2 > 1.1 10 5 > 3700 27 - 0.65 4.5 10 3 273 B(E1) [W.u.] 5 10 -7 2 10 -7 2 10 -8 5 10 -8 7 10 -9 2 10 -6 5 10 -6 — stat’lstat’l
9
Tunneling paths and barriers Calculate potential energy surfaces for fixed spins. Determine least-action path from SD min to ND well. Get barrier height in direction of path. [K.Yoshida et al., NPA696, 85 (2001) and refs. therein.] Compare 152 Dy and 84 Zr surfaces….
10
152Dy PES152Dy PES
19
Below the decay-out spin in 152 Dy!
20
84Zr PES84Zr PES
30
Below the decay-out spin in 84 Zr!
31
Barrier heights calculated along least-action paths from fixed-spin potential surfaces, as in K.Yoshida et al., NPA696, 85 (2001). barriersbarriers
32
Summary “Full” characterization of an A 80 SD band: E x, I , Q t, B( ) [several neighbors studied too, but no luck linking!] Results are consistent with CS-LN calculations for 5 2 5 1 configuration [esp. E x (I) in crossing region] 84 Zr SD1 has eclectic properties; similar to: 152 Dy [spin, energy, B(E1)] 192 Pb [strength of SD-ND coupling] A 60,130 regions [potential barriers] HF+SLy4 calcs at I =25 reveal many configs at different deformations with similar energies supports PES picture
33
C. J. Chiara, D. G. Sarantites, M. Montero, J. O’Brien, O. L. Pechenaya, and W. Reviol, Washington U. R. M. Clark, P. Fallon, A. Görgen, A. O. Macchiavelli, and D. Ward, LBNL Theoretical support from W.Satuła, U. of Warsaw and Y.R.Shimizu, Kyushu U. C. J. Chiara, D. G. Sarantites, M. Montero, J. O’Brien, O. L. Pechenaya, and W. Reviol, Washington U. R. M. Clark, P. Fallon, A. Görgen, A. O. Macchiavelli, and D. Ward, LBNL Theoretical support from W.Satuła, U. of Warsaw and Y.R.Shimizu, Kyushu U. The EndThe End
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.