Download presentation
Presentation is loading. Please wait.
Published byTyler Sharp Modified over 9 years ago
1
Atomic Physics with Supercomputers. Darío M. Mitnik
2
Electron-Ion scattering calculations. Darío M. Mitnik
3
Atomic Physics with Supercomputers. Darío M. Mitnik
4
M. S. Pindzola, F. Robicheaux, J. Colgan, Auburn University, Auburn, AL D. C. Griffin, Rollins College, Winter Park, FL N. R. Badnell Strathclyde University, Glasgow, UK
5
Outline What are we calculating? Why do we need supercomputers for such calculations? How do we use the supercomputers in these calculations?
6
What are we calculating? Rate Coefficients Cross Sections
7
Electron-Impact Excitation kiki N electron ion kfkf E th bb aa
8
Electron-Impact Excitation aa bb ii ff
9
(N 1) – electron ion kfkf keke Electron-Impact Ionization kiki EIEI N – electron ion aa
10
Electron-Impact Ionization aa ee ii ff
11
Radiative Recombination N – electron ion EIEI (N+1) – electron ion kiki aa bb
12
Radiative Recombination M ba = bb a+ ia+ i Photoionization: Radiative Recombination: M ab = 4 2 c 2 /( 2 k i ) |M ba | 2
13
Dielectronic Recombination M ba = bb a+ ia+ i Photoionization: bb a+ ia+ i nn nn + n + i n /2 +
14
N – electron ion bb EIEI (N+1) – electron ion Dielectronic Recombination kiki nn aa
15
EIEI 1s 2 2s 1s 2 2s 2 Li-like Be-like 1s 2 2p 1s 2 2pnl 1s 2 2p 3/2 1s 2 2p 3/2 nl
16
Dielectronic Recombination D.M. Mitnik et al, Phys. Rev. A 61, 022705 (2000)
17
Dielectronic Recombination D.M. Mitnik et al, Phys. Rev. A 57, 4365 (1998)
18
Electron-ion Recombination D.M. Mitnik et al, Phys. Rev. A 59, 3592 (1999)
19
Excitation-Autoionization EIEI 1s 2 2s 1s 2 2s 2 Li-like Be-like 1s 2 2p 1s 2 2p 3/2 1s 2 2p 3/2 nl
20
Excitation-Autoionization D.M. Mitnik et al, Phys. Rev. A 53, 3178 (1996)
21
Excitation (resonances) EIEI 1s 2 2s 1s 2 2s 2 Li-like Be-like 1s 2 2p 1s 2 2p 3/2 1s 2 2p 3/2 nl
22
Excitation (resonances) D.M. Mitnik et al, Phys. Rev. A 62, 062711 (2000)
23
Excitation (resonances) D.C. Griffin et al, J. Phys. B 33, 4389 (2000)
24
Why supercomputers in Atomic Physics? only a few atomic physicists are using supercomputers
25
“Collisional breakup in a quantum system of three charged particles” M. S. Pindzola and F. Robicheaux, Phys. Rev. A 54, 2142 (1996). Why supercomputers in Atomic Physics? T. R. Rescigno et al., Science 286, 2474 (1999).
26
Electron-Impact Ionization of Hydrogen even the simplest example: e + H H + e + e has resisted solution until now
27
Methods Perturbative methods Non-Perturbative methods Distorted Waves Time-independent Time-dependent
28
Time-independent: R-matrix method P. G. Burke and K. A. Berrington 27 key papers reprinted Short Bibliography list: 547 references
29
Time-independent: R-matrix method Internal RegionExternal Region a Target H = E ~ sin(kr) + Kcos(kr)
30
Why supercomputers? Size of (N+1)-Hamiltonian : MXMAT = MZCHF x MZNR2 + MZNC2 # scattering channels # of continuum orbitals for given L # (N+1) terms for given SL 158 x 50 + 100 = 8000 ~ 512 Mb
31
Why supercomputers? Thousands of points are needed in order to map the narrow resonances. Energy (eV) Collision Strength D.C. Griffin et al, J. Phys. B 33, 4389 (2000)
32
Time-Dependent method Time-dependent Schrodinger equation:
33
Time-Dependent method Time-dependent close-coupled equation:
34
Why supercomputers? 16 x 250 x 250 = 1000000 250 x 250 = 62500 # coupled channels # partial waves # points in spatial lattice
35
Why supercomputers? Memory Time
36
What is a supercomputer? Distributed-Memory Shared-Memory
37
Glossary functional parallelism parallelization data parallelism
38
Example of data parallelism we have 10000 cards we want to pick up the highest card each comparison takes 1 second
39
Example of data parallelism 1 processor 10000 1 sec Time (sec) Processors 2 processors 5000 1 1 sec 10 processors 1008 sec 100 processors 198 sec 10000 processors 10000 sec
40
Example of a simple program print*, ‘hello world’ stop end call mpi_init call mpi_ rank(iam,nproc) print*, ‘hello world, from process # ’,iam call mpi_finalize stop end
41
Example of a simple program hello world hello world, from process 2 hello world, from process 0 hello world, from process 4 hello world, from process 1 hello world, from process 3
42
The R-matrix I package Inner-Region STG1 : calculates the orbital basis and all radial integrals STG2 : calculates LS-coupling matrix elements. solves the N-electron problem. sets the (N+1)-electron Hamiltonian STG3 : diagonalizes the (N+1)-electron Hamiltonian in the continuum basis
43
The R-matrix I package Outer-Region STGF : solves the external-region coupled equations. STGICF : calculates level-to-level collision strengths by doing an intermediate- coupling frame transformation.
44
Diagonalization Timing
45
Example 191 x 34 + 506 = 7000 62-state calculation: 191 coupled channels 34 continuum-box orbitals 506 (N+1)-electron bound configurations 55-state calculation (Dell 603): 59 h and 41 min 62-state calculation (T3E-900) : 64-processors - 69 min.
46
Parallelization of the external-region codes processor 1 processor 6
47
Time-Dependent method Time evolution of a single-channel: Time-dependent Schrodinger equation:
48
Time-Dependent method Initial condition for the solution:
50
Time-Dependent method
51
Propagated wavefunction:
52
Time-Dependent method Cross Section: Projection of the wavefunction:
53
Parallelization of the time-dependent codes processor 1 processor 6
54
Conclusions Atomic Physics is still alive
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.