Download presentation
Presentation is loading. Please wait.
Published byCornelius Buck Cain Modified over 9 years ago
1
Relative Phase between Strong and EM Decays at BESIII and CLEOc Marco Destefanis Università degli Studi di Torino 1 on behalf of the BESIII Collaboration Quarkonium 2013 The 9th International Workshop on Heavy Quarkonium IHEP, Beijing, April 22-26, 2013
2
Overview BESIII experiment Motivation CLEOc and SND results Investigated processes Summary 2
3
3 Charmonium Physics D-Physics Light Hadron Spectroscopy -Physics ... Physics program The BESIII Experiment @ IHEP BEijing Spectrometer III e + e - collisions S tuned depending on energy D.M. Asner et al, Physics at BES-III, arXiv:0809.1869v1 [hep-ex] (2008)
4
4 Beam energy: 1.0-2.3 GeV Design Luminosity: 1×10 33 cm -2 s -1 Achieved Luminosity: 6.5×10 32 cm -2 s -1 @ ψ(3770) Optimum energy: 1.89 GeV Energy spread: 5.16 ×10 -4 No. of bunches: 93 Bunch length: 1.5 cm Total current: 0.91 A Circumference: 237m e-e- e+e+ BEPCII Storage Rings Beijing Electron-Positron Collider II
5
5 MDC: small cell & He gas xy = 130 m p /p = 0.5% @1GeV dE/dx = 6% EMC: CsI crystals, 28 cm E/E = 2.5% @1 GeV z = 0.6 cm/ E TOF: T = 80 ps Barrel 110 ps Endcap Magnet: 1T Superconducting Muon: 9 layer RPC Trigger: Tracks & Showers Pipelined; Latency = 2.4 ms Data Acquisition: Event rate = 3 kHz Thruput ~ 50 MB/s Zero Degree Detector (ISR) BESIII Detector
6
J/ψ Strong and Electromagnetic Decay Amplitudes Resonant contributions Γ J/ψ ~ 93KeV → pQCD pQCD: all amplitudes almost real [1,2] QCD -> Ф p ~ 10° [1] Non-resonant continuum pQCD regime A EM 6 [1] J. Bolz and P. Kroll, WU B 95-35. [2] S.J. Brodsky, G.P. Lepage, S.F. Tuan, Phys. Rev. Lett. 59, 621 (1987). Strong → A 3g Electromagnetic → A γ Non-resonant Continuum → A EM hadrons
7
J/ψ Strong and Electromagnetic Decay Amplitudes If both real, they must interfere (Ф p ~ 0°/180°) On the contrary Ф p ~ 90° → No interference J/ψ → NN ( ½ + ½ - ) Ф p = 89° ± 15° [1] ; 89° ± 9° [2] J/ψ → VP (1 - 0 - ) Ф p = 106° ± 10° [3] J/ψ → PP (0 - 0 - ) Ф p = 89.6° ± 9.9° [4] J/ψ → VV (1 - 1 - ) Ф p = 138° ± 37° [4] Results are model dependent Model independent test: interference with the non resonant continuum [1] R. Baldini, C. Bini, E. Luppi, Phys. Lett. B404, 362 (1997); R. Baldini et al., Phys. Lett. B444, 111 (1998) [2] M. Ablikim et al., Phys. Rev. D 86, 032014 (2012). [3] L. Kopke and N. Wermes, Phys. Rep. 174, 67 (1989); J. Jousset et al., Phys. Rev. D41,1389 (1990). [4] M. Suzuki et al., Phys. Rev. D60, 051501 (1999). 7
8
8 J/ψ Strong and Electromagnetic Decay Amplitudes J/ψ → NN Favoured channel 3g match 3qq pairs Without EM contribution p = n, due to isospin EM contribution amplitudes have opposite sign, like magnetic moments BR nn expected ~ ½ BR pp But the BR are almost equal according to BESIII [1] : BR(J/ψ → pp) = (2.112 ± 0.004 ± 0.027)10 -3 BR(J/ψ → nn) = (2.07 ± 0.01 ± 0.14)10 -3 Suggests 90° phase [1] M. Ablikim et al., Phys. Rev. D 86, 032014 (2012). A 3g,A R<<1 A 3g A R 1
9
9 Cross section for e + e - -> π + π - π 0 Interference of φ(1020) amplitudes @ SND experiment [1] Shape indicates full interference path phase ~ 180° φ decay in agreement with PQCD A 3g and A EM are both real [1] M.N. Achasov et al., PRD 63, 072002 (2001).
10
10 Phase Reconstruction @ CLEOc φ S. Dobbs et al., Phys. Rev. D 74, 011105 (2006).
11
11 Phase Reconstruction @ CLEOc E vis = event energy Charged π FF S. Dobbs et al., Phys. Rev. D 74, 011105 (2006).
12
Was an Interference Already Seen? e + e - → hadrons e + e - → µ + µ - e + e - → e + e - J.Z. Bai et al., Phys. Lett. B 355, 374-380 (1995) Yes without the strong contribution 12
13
Investigated Processes Inclusive scenario: does not see anything The phase is there, but the mean goes to 0 Interference Sum over all the final states Closure approximation But orthogonal states If we sum over all the channels, the interference ≈ 0 13
14
Investigated Processes Exclusive scenario: could see interference effects e + e + -> J/ψ -> pp, nnNN BR ~ 2.17x10 -3 σ cont ~ 11 pb e + e - -> J/ψ -> ρπ VP BR ~ 1.69%σ cont ~ 20 pb e + e - -> J/ψ -> 2( π + π - ) π 0 BR ~ 5.5% σ cont ~ 500 pb 14
15
15 Investigated Processes Exclusive scenario: could see interference effects also on e + e - -> J/ψ -> π + π - e + e - -> J/ψ -> K + K - e + e - -> J/ψ -> K 0 K 0 proposed and under study [1] All the other channels for free Even number of π : strong decay forbidden -> interference must be seen [1] H. Czyz, and J. Kühn, Phys. Rev. D80: 034035 (2009)
16
σ cont ~ 11 pb Continuum Cross Section 16 σ cont ~ 500 pb σ cont ~ 20 pb pp ρπ 5π5π5π5π V. Druzhinin et al., Rev. Mod. Phys. 83, 1545 (2011) ; B. Aubert et al., Phys. Rev. D73,012005 (2006)
17
Phase Generator Event generator Monte-Carlo method (100000 iterations) Cross section evaluation at each point Beam spread gaussian (0.93 MeV) Radiative correction (simple model to be optimized) Max radiation 300 MeV (~20% E CM ) Cross section: 17
18
Simulated Yields for e + e - -> pp continuum reference σ ~ 11 pb beam energy spread + radiative corrections (to be optimized) no correctionsbeam energy spread (0.93 MeV) Δφ = 0° Δφ = 90° Δφ = 180° 18
19
Simulated Yields for pp -> µ + µ - continuum reference σ ~ 18 pb no correctionsbeam energy spread Δφ = 0° Δφ = 90° Δφ = 180° 19
20
Phase Sign * red: Δφ = -90° blue: Δφ = +90° Maximum differences at the 1% level 20 pp
21
Energy Points Choice ρπ 5π5π5π5πpp 21 Maximum interference: 0° Depends on the process
22
Energy Points Choice ρπ 5π5π5π5πpp 22 2 pts at low W fix the continuum fix the slope Maximum interference: 0° Depends on the process
23
Energy Points Choice ρπ 5π5π5π5πpp 23 2 pts at low W fix the continuum fix the slope 2 pts at deep positions Maximum interference: 0° Depends on the process
24
Energy Points Choice ρπ 5π5π5π5πpp 24 2 pts at low W fix the continuum fix the slope 2 pts at deep positions Maximum interference: 0° Depends on the process
25
Energy Points Choice ρπ 5π5π5π5πpp 25 2 pts at low W fix the continuum fix the slope 2 pts at deep positions 1 pt Beginning of the BW Maximum interference: 0° Depends on the process
26
Energy Points Choice What happens at 90° Gradient calculation The deep corresponds roughly to the maximum gradient (σ 90 -σ i )/σ 90 i = 70 i = 100 i = 80 i = 110 26 i = 70 i = 100 i = 80 i = 110 ppρπ
27
Energy Points Choice 3050 MeV 3060 MeV 3083 MeV 3090 MeV 3093 MeV 27
28
Luminosity Hypothesis 5 values of Luminosity: 8.610 31, 10 32, 210 32, 510 32, 10 33 [cm -2 s -1 ] Time: 1 day = 86400 s Injection efficiency = 0.8 Reconstruction efficiency pp = 0.67 ρπ = 0.38 5 π = 0.20 Rate = LTε injε rec σ Integrated Luminosity L int /day = L T ε inj 610 36, 6.910 36, 1.410 37, 3.510 37, 6.910 37 [cm -2 ] 28
29
Precision of the Fit 29 10° 90° 170° Statistical error for: pp circle ρπtriangle 170° Lower sensitivity (No 0°-90° and 90°-180° symmetry) 2 parameters: φ and σ cont
30
30 5 days L int = 1.4x10 37 [cm -2 ] points: 3050,3060, 3083,3090, 3093 MeV ℓ 1 : ℓ 1 : ℓ 2 : ℓ 2 : ℓ 1 Fit results 10° 90° 170° Statistical error: pp circle ρπtriangle Open points: 1:1:0.5:0.5:2 Very low sensitivity to Luminosity ratios Best and simplest choice: 1:1:1:1:1
31
31 J/ ψ Scan 3 parameters: φ, σ cont and B out PointsParInj. eff.Δφ [°]Δσ [pb]ΔB out 530.729.31.30.710 -3 530.826.71.30.710 -3 630.86.10.90.410 -5 1230.76.30.90.710 -4 1230.85.90.90.710 -4 σ cont = 11 pbB out = 2.1710 -3 3 parameters: 3096.9 needed (1 point more with high statistics) Δφ = +90° pp
32
32 J/ ψ Phase Energy requested [MeV] Energy collected [MeV] L int [pb -1 ] 3050304614.0 3060305614.0 3083308616.5 3090308514.0 3093308814.0 3097 79.6
33
33 J/ ψ Phase – Real Data Ecm(GeV) (pb -1 ) 3.050014.895±0.029 3.060015.056±0.030 3.08304.759±0.017 3.085617.507±0.032 3.090015.552±0.030 3.093015.249±0.030 3.09432.145±0.011 3.09521.819±0.010 Ecm(GeV) (pb -1 ) 3.09582.161±0.011 3.09692.097±0.011 3.09822.210±0.011 3.09900.759±0.007 3.10151.164±0.010 3.10552.106±0.011 3.11201.719±0.010 3.12001.261±0.009 3.0969 79.6 B.X. Zhang, Luminosity measurement for J/psi phase and lineshape study.
34
34 e + e - -> μ + μ - Phase Reconstruction 2 good charged tracks: |Rxy|<1cm, |Rz|<10cm; |cos |<0.8. No good neutral tracks in EMC: 0<T<14 (x50 ns) E >25MeV (|cos | 50 MeV (0.86<|cos |<0.92) ,charged<10 o. Vertex fit to impove the momentum resolution: 2 vertex <100. Veto e + e : Each charged track has an energy deposit in EMC; E/p<0.25. Veto cosmic rays: =|Tof( + )-Tof( )|<0.5 Momentum window cut: |p ± -p the |<3 Leptonic decay Contributions from A γ and A EM
35
35 e + e - -> 2(π + π - ) Phase Reconstruction 4 good charged tracks: |Rxy|<1cm, |Rz|<10cm. Vertex fit to improve the momentum resolution. Veto bkg from -conversion (2(e + e )): All angles between and , 10 o < + <170 o. Veto events which have multi- tracks: Minimum angle between ( ) pairs: ( )>170 o. G-Parity Contributions from A γ and A EM
36
36 e + e - -> 2(π + π - )π 0 Phase Reconstruction 4 good charged tracks: |Rxy|<1cm, |Rz|<10cm. At least 2 good neutral tracks in EMC: 0<T<14 (x50 ns); E >25MeV (|cos | 50 MeV (0.86<|cos |<0.92) ,charged<10 o. PID for each charged track: prob( )>prob(K) Vertex fit: 2 vertex <100. 3-C kinematic fit: Loop all photons, choose the combination with the minimum 2 3C (<200). 0 selection: |M( )-0.135|<0.02 GeV/c2 Multi-combination from intermediate processes Contributions from A γ and A EM
37
37 2 good charged tracks: |Rxy| < 1 cm, |Rz| < 10 cm; back-to-back tracks: 178° < θ < 180°; p < 2 GeV/c; |cos| < 0.92 Analysis in Barrel + End Cap. ppbar Events Reconstruction M. Ablikim et al., Phys. Rev. D 86, 032014 (2012).
38
38 ISR Radiative Corrections Comparison of different generators KKMCPhase Space KKMC1 + cos 2 θ ConExc Babayaga ISR on/off Check at each energy point Reconstruction Efficiency and Systematic Errors
39
Summary J/ψ decay amplitude phase: 0° (theory) but 90° (data) Energy points collected: 3046, 3056, 3086, 3085, 3088 Statistical significance enough to discriminate between different theoretical predictions Precision of fit → Luminosity dependence Analysis is ongoing Next Steps Complete the presented analysis Analyze more final states More refined ISR evaluation 39
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.