Presentation is loading. Please wait.

Presentation is loading. Please wait.

Relative Phase between Strong and EM Decays at BESIII and CLEOc Marco Destefanis Università degli Studi di Torino 1 on behalf of the BESIII Collaboration.

Similar presentations


Presentation on theme: "Relative Phase between Strong and EM Decays at BESIII and CLEOc Marco Destefanis Università degli Studi di Torino 1 on behalf of the BESIII Collaboration."— Presentation transcript:

1 Relative Phase between Strong and EM Decays at BESIII and CLEOc Marco Destefanis Università degli Studi di Torino 1 on behalf of the BESIII Collaboration Quarkonium 2013 The 9th International Workshop on Heavy Quarkonium IHEP, Beijing, April 22-26, 2013

2 Overview BESIII experiment Motivation CLEOc and SND results Investigated processes Summary 2

3 3  Charmonium Physics  D-Physics  Light Hadron Spectroscopy   -Physics ... Physics program The BESIII Experiment @ IHEP BEijing Spectrometer III e + e - collisions  S tuned depending on energy D.M. Asner et al, Physics at BES-III, arXiv:0809.1869v1 [hep-ex] (2008)

4 4  Beam energy: 1.0-2.3 GeV  Design Luminosity: 1×10 33 cm -2 s -1  Achieved Luminosity:  6.5×10 32 cm -2 s -1 @ ψ(3770)  Optimum energy: 1.89 GeV  Energy spread: 5.16 ×10 -4  No. of bunches: 93  Bunch length: 1.5 cm  Total current: 0.91 A  Circumference: 237m e-e- e+e+ BEPCII Storage Rings Beijing Electron-Positron Collider II

5 5 MDC: small cell & He gas  xy = 130  m  p /p = 0.5% @1GeV dE/dx = 6% EMC: CsI crystals, 28 cm  E/E = 2.5% @1 GeV  z = 0.6 cm/  E TOF:  T = 80 ps Barrel 110 ps Endcap Magnet: 1T Superconducting Muon: 9 layer RPC Trigger: Tracks & Showers Pipelined; Latency = 2.4 ms Data Acquisition: Event rate = 3 kHz Thruput ~ 50 MB/s Zero Degree Detector (ISR) BESIII Detector

6 J/ψ Strong and Electromagnetic Decay Amplitudes Resonant contributions Γ J/ψ ~ 93KeV → pQCD pQCD: all amplitudes almost real [1,2] QCD -> Ф p ~ 10° [1] Non-resonant continuum pQCD regime A EM  6 [1] J. Bolz and P. Kroll, WU B 95-35. [2] S.J. Brodsky, G.P. Lepage, S.F. Tuan, Phys. Rev. Lett. 59, 621 (1987). Strong → A 3g Electromagnetic → A γ Non-resonant Continuum → A EM hadrons

7 J/ψ Strong and Electromagnetic Decay Amplitudes If both real, they must interfere (Ф p ~ 0°/180°) On the contrary Ф p ~ 90° → No interference J/ψ → NN ( ½ + ½ - ) Ф p = 89° ± 15° [1] ; 89° ± 9° [2] J/ψ → VP (1 - 0 - ) Ф p = 106° ± 10° [3] J/ψ → PP (0 - 0 - ) Ф p = 89.6° ± 9.9° [4] J/ψ → VV (1 - 1 - ) Ф p = 138° ± 37° [4] Results are model dependent Model independent test: interference with the non resonant continuum [1] R. Baldini, C. Bini, E. Luppi, Phys. Lett. B404, 362 (1997); R. Baldini et al., Phys. Lett. B444, 111 (1998) [2] M. Ablikim et al., Phys. Rev. D 86, 032014 (2012). [3] L. Kopke and N. Wermes, Phys. Rep. 174, 67 (1989); J. Jousset et al., Phys. Rev. D41,1389 (1990). [4] M. Suzuki et al., Phys. Rev. D60, 051501 (1999). 7

8 8 J/ψ Strong and Electromagnetic Decay Amplitudes J/ψ → NN Favoured channel 3g match 3qq pairs Without EM contribution p = n, due to isospin EM contribution amplitudes have opposite sign, like magnetic moments BR nn expected ~ ½ BR pp But the BR are almost equal according to BESIII [1] : BR(J/ψ → pp) = (2.112 ± 0.004 ± 0.027)10 -3 BR(J/ψ → nn) = (2.07 ± 0.01 ± 0.14)10 -3  Suggests 90° phase [1] M. Ablikim et al., Phys. Rev. D 86, 032014 (2012). A 3g,A   R<<1 A 3g  A  R  1

9 9 Cross section for e + e - -> π + π - π 0 Interference of φ(1020) amplitudes @ SND experiment [1] Shape indicates full interference path phase ~ 180° φ decay in agreement with PQCD A 3g and A EM are both real [1] M.N. Achasov et al., PRD 63, 072002 (2001).

10 10 Phase Reconstruction @ CLEOc φ S. Dobbs et al., Phys. Rev. D 74, 011105 (2006).

11 11 Phase Reconstruction @ CLEOc E vis = event energy Charged π FF S. Dobbs et al., Phys. Rev. D 74, 011105 (2006).

12 Was an Interference Already Seen? e + e - → hadrons e + e - → µ + µ - e + e - → e + e - J.Z. Bai et al., Phys. Lett. B 355, 374-380 (1995) Yes without the strong contribution 12

13 Investigated Processes  Inclusive scenario: does not see anything The phase is there, but the mean goes to 0 Interference Sum over all the final states Closure approximation But orthogonal states If we sum over all the channels, the interference ≈ 0 13

14 Investigated Processes  Exclusive scenario: could see interference effects e + e + -> J/ψ -> pp, nnNN BR ~ 2.17x10 -3 σ cont ~ 11 pb e + e - -> J/ψ -> ρπ VP BR ~ 1.69%σ cont ~ 20 pb e + e - -> J/ψ -> 2( π + π - ) π 0 BR ~ 5.5% σ cont ~ 500 pb 14

15 15 Investigated Processes  Exclusive scenario: could see interference effects also on e + e - -> J/ψ -> π + π - e + e - -> J/ψ -> K + K - e + e - -> J/ψ -> K 0 K 0 proposed and under study [1] All the other channels for free Even number of π : strong decay forbidden -> interference must be seen [1] H. Czyz, and J. Kühn, Phys. Rev. D80: 034035 (2009)

16 σ cont ~ 11 pb Continuum Cross Section 16 σ cont ~ 500 pb σ cont ~ 20 pb pp ρπ 5π5π5π5π V. Druzhinin et al., Rev. Mod. Phys. 83, 1545 (2011) ; B. Aubert et al., Phys. Rev. D73,012005 (2006)

17 Phase Generator Event generator Monte-Carlo method (100000 iterations) Cross section evaluation at each point Beam spread gaussian (0.93 MeV) Radiative correction (simple model to be optimized) Max radiation 300 MeV (~20% E CM ) Cross section: 17

18 Simulated Yields for e + e - -> pp continuum reference σ ~ 11 pb beam energy spread + radiative corrections (to be optimized) no correctionsbeam energy spread (0.93 MeV) Δφ = 0° Δφ = 90° Δφ = 180° 18

19 Simulated Yields for pp -> µ + µ - continuum reference σ ~ 18 pb no correctionsbeam energy spread Δφ = 0° Δφ = 90° Δφ = 180° 19

20 Phase Sign * red: Δφ = -90° blue: Δφ = +90° Maximum differences at the 1% level 20 pp

21 Energy Points Choice ρπ 5π5π5π5πpp 21 Maximum interference: 0° Depends on the process

22 Energy Points Choice ρπ 5π5π5π5πpp 22  2 pts at low W fix the continuum fix the slope Maximum interference: 0° Depends on the process

23 Energy Points Choice ρπ 5π5π5π5πpp 23  2 pts at low W fix the continuum fix the slope  2 pts at deep positions Maximum interference: 0° Depends on the process

24 Energy Points Choice ρπ 5π5π5π5πpp 24  2 pts at low W fix the continuum fix the slope  2 pts at deep positions Maximum interference: 0° Depends on the process

25 Energy Points Choice ρπ 5π5π5π5πpp 25  2 pts at low W fix the continuum fix the slope  2 pts at deep positions  1 pt Beginning of the BW Maximum interference: 0° Depends on the process

26 Energy Points Choice  What happens at 90° Gradient calculation The deep corresponds roughly to the maximum gradient (σ 90 -σ i )/σ 90 i = 70 i = 100 i = 80 i = 110 26 i = 70 i = 100 i = 80 i = 110 ppρπ

27 Energy Points Choice 3050 MeV 3060 MeV 3083 MeV 3090 MeV 3093 MeV 27

28 Luminosity Hypothesis 5 values of Luminosity: 8.610 31, 10 32, 210 32, 510 32, 10 33 [cm -2 s -1 ] Time: 1 day = 86400 s Injection efficiency = 0.8 Reconstruction efficiency pp = 0.67 ρπ = 0.38 5 π = 0.20 Rate = LTε injε rec σ Integrated Luminosity L int /day = L T ε inj 610 36, 6.910 36, 1.410 37, 3.510 37, 6.910 37 [cm -2 ] 28

29 Precision of the Fit 29 10° 90° 170° Statistical error for: pp circle ρπtriangle 170° Lower sensitivity (No 0°-90° and 90°-180° symmetry) 2 parameters: φ and σ cont

30 30 5 days L int = 1.4x10 37 [cm -2 ] points: 3050,3060, 3083,3090, 3093 MeV ℓ 1 : ℓ 1 : ℓ 2 : ℓ 2 : ℓ 1 Fit results 10° 90° 170° Statistical error: pp circle ρπtriangle Open points: 1:1:0.5:0.5:2 Very low sensitivity to Luminosity ratios Best and simplest choice: 1:1:1:1:1

31 31 J/ ψ Scan 3 parameters: φ, σ cont and B out PointsParInj. eff.Δφ [°]Δσ [pb]ΔB out 530.729.31.30.710 -3 530.826.71.30.710 -3 630.86.10.90.410 -5 1230.76.30.90.710 -4 1230.85.90.90.710 -4 σ cont = 11 pbB out = 2.1710 -3 3 parameters: 3096.9 needed (1 point more with high statistics) Δφ = +90° pp

32 32 J/ ψ Phase Energy requested [MeV] Energy collected [MeV] L int [pb -1 ] 3050304614.0 3060305614.0 3083308616.5 3090308514.0 3093308814.0 3097 79.6

33 33 J/ ψ Phase – Real Data Ecm(GeV)  (pb -1 ) 3.050014.895±0.029 3.060015.056±0.030 3.08304.759±0.017 3.085617.507±0.032 3.090015.552±0.030 3.093015.249±0.030 3.09432.145±0.011 3.09521.819±0.010 Ecm(GeV)  (pb -1 ) 3.09582.161±0.011 3.09692.097±0.011 3.09822.210±0.011 3.09900.759±0.007 3.10151.164±0.010 3.10552.106±0.011 3.11201.719±0.010 3.12001.261±0.009 3.0969 79.6 B.X. Zhang, Luminosity measurement for J/psi phase and lineshape study.

34 34 e + e - -> μ + μ - Phase Reconstruction 2 good charged tracks: |Rxy|<1cm, |Rz|<10cm; |cos  |<0.8. No good neutral tracks in EMC: 0<T<14 (x50 ns) E  >25MeV (|cos  | 50 MeV (0.86<|cos  |<0.92)  ,charged<10 o. Vertex fit to impove the momentum resolution:  2 vertex <100. Veto e + e  : Each charged track has an energy deposit in EMC; E/p<0.25. Veto cosmic rays:  =|Tof(  + )-Tof(   )|<0.5 Momentum window cut: |p  ± -p the |<3  Leptonic decay Contributions from A γ and A EM

35 35 e + e - -> 2(π + π - ) Phase Reconstruction 4 good charged tracks: |Rxy|<1cm, |Rz|<10cm. Vertex fit to improve the momentum resolution. Veto bkg from  -conversion (2(e + e  )): All angles between   and  , 10 o <   +  <170 o. Veto events which have multi- tracks: Minimum angle between (     ) pairs:  (         )>170 o. G-Parity Contributions from A γ and A EM

36 36 e + e - -> 2(π + π - )π 0 Phase Reconstruction 4 good charged tracks: |Rxy|<1cm, |Rz|<10cm. At least 2 good neutral tracks in EMC: 0<T<14 (x50 ns); E  >25MeV (|cos  | 50 MeV (0.86<|cos  |<0.92)  ,charged<10 o. PID for each charged track: prob(  )>prob(K) Vertex fit:  2 vertex <100. 3-C kinematic fit: Loop all photons, choose the combination with the minimum  2 3C (<200).  0 selection: |M(  )-0.135|<0.02 GeV/c2 Multi-combination from intermediate processes Contributions from A γ and A EM

37 37 2 good charged tracks: |Rxy| < 1 cm, |Rz| < 10 cm; back-to-back tracks: 178° < θ < 180°; p < 2 GeV/c; |cos| < 0.92 Analysis in Barrel + End Cap. ppbar Events Reconstruction M. Ablikim et al., Phys. Rev. D 86, 032014 (2012).

38 38 ISR Radiative Corrections Comparison of different generators KKMCPhase Space KKMC1 + cos 2 θ ConExc Babayaga ISR on/off Check at each energy point Reconstruction Efficiency and Systematic Errors

39 Summary J/ψ decay amplitude phase: 0° (theory) but 90° (data) Energy points collected: 3046, 3056, 3086, 3085, 3088 Statistical significance enough to discriminate between different theoretical predictions Precision of fit → Luminosity dependence Analysis is ongoing Next Steps Complete the presented analysis Analyze more final states More refined ISR evaluation 39


Download ppt "Relative Phase between Strong and EM Decays at BESIII and CLEOc Marco Destefanis Università degli Studi di Torino 1 on behalf of the BESIII Collaboration."

Similar presentations


Ads by Google