Download presentation
Presentation is loading. Please wait.
Published byTimothy Hicks Modified over 9 years ago
2
LP. Csernai, NWE'2001, Bergen1 Part II Relativistic Hydrodynamics For Modeling Ultra-Relativistic Heavy Ion Reactions
3
LP. Csernai, NWE'2001, Bergen2 Multi Module Modeling Initial state - pre-equilibrium: Parton Cascade; Coherent Yang-Mills [Magas] Local Equilibrium Hydro, EoS Final Freeze-out: Kinetic models, measurables If QGP Sudden and simultaneous hadronization and freeze out (indicated by HBT, Strangeness, Entropy puzzle) Landau (1953), Milekhin (1958), Cooper & Frye (1974) Experiment
4
LP. Csernai, NWE'2001, Bergen3 Global Flow Directed Transverse flow Elliptic flow 3 rd flow component (anti - flow) Squeeze out
5
LP. Csernai, NWE'2001, Bergen4 Spherical Flow from Identified Particle Spectra p T (GeV/c) Fit K, p spectra to obtain ~ 0.35 T fo ~ 180-200 MeV Systematic errors: to be determined [W.A. Zajc, QM’2001]
6
LP. Csernai, NWE'2001, Bergen5 More spherical flow at RHIC ! [N.Xu, QM’2001]
7
LP. Csernai, NWE'2001, Bergen6 Global Flow Directed Transverse flow Elliptic flow 3 rd flow component (anti - flow) Squeeze out
8
LP. Csernai, NWE'2001, Bergen7 Repulsion Driven by Gradients in Mean-Field Flow decreases as function of E beam Measured sideways flow cannot be reproduced by cascade calculations (RQMD 2.3) – “thermal” pressure insufficient amount of deflection Additional repulsion caused by gradients in mean-field E895, Phys. Rev. Lett 84, 5488 (2000) Mike Lisa E895 Talk [C.Ogilvie, QM’2001]
9
LP. Csernai, NWE'2001, Bergen8 Global Flow Directed Transverse flow Elliptic flow 3 rd flow component (anti - flow) Squeeze out
10
LP. Csernai, NWE'2001, Bergen9
11
10 Elliptic flow - SPS - NA49
12
LP. Csernai, NWE'2001, Bergen11 p T dependence for ,p Hydro calculations: P. Huovinen, P. Kolb and U. Heinz
13
LP. Csernai, NWE'2001, Bergen12 Elliptic flow at RHIC [Huovinen, QM’2001]
14
LP. Csernai, NWE'2001, Bergen13 Elliptic flow in MPC [ D. Molnar, QM’2001 ]
15
LP. Csernai, NWE'2001, Bergen14
16
LP. Csernai, NWE'2001, Bergen15 Elliptic flow vs. Squeeze out At LBL, GSI, AGS flow is orthogonal to the reaction plane: Squeeze out At SPS, RHIC central flow is in the reaction plane: Elliptic flow. This is due to the initial state and shadowing. [R. Lacey, QM’2001]
17
LP. Csernai, NWE'2001, Bergen16 Comparison of all v 2 results PHENIX (p T >500 MeV) n ch /n max v2v2 [P.Steinberg, QM’2001]
18
LP. Csernai, NWE'2001, Bergen17
19
LP. Csernai, NWE'2001, Bergen18 Global Flow Directed Transverse flow Elliptic flow 3 rd flow component (anti - flow) 3 rd flow component (anti - flow) Squeeze out
20
LP. Csernai, NWE'2001, Bergen19 K 0 s Anti-Flow Au+Au 6 AGeV Striking opposite flow for K 0 s Reproduced using repulsive mean-field for K 0 Chris Pinkenberg E895 Talk proton Chung et al., Phys. Rev Lett 85, 940 (2000) Pal et al., Phys. Rev. C 62, 061903 (2000) K0sK0s
21
LP. Csernai, NWE'2001, Bergen20 Third flow component [SPS NA49]
22
LP. Csernai, NWE'2001, Bergen21 Third flow component / SPS / NA49
23
LP. Csernai, NWE'2001, Bergen22 3 rd flow component and QGP Csernai & Röhrich [Phys.Lett.B458(99)454] observed a 3 rd flow component at SPS energies, not discussed before. Also observed that in ALL earlier fluid dynamical calculations with QGP in the EoS there is 3 rd flow comp. The effect was absent without QGP. In string and RQMD models only peripheral collision showed the effect (shadowing). The effect is attributed to a flat (Landau type) initial condition. Similarity to elliptic flow.
24
LP. Csernai, NWE'2001, Bergen23 3 rd flow component Hydro [Csernai, HIPAGS’93]
25
LP. Csernai, NWE'2001, Bergen24 STRANGENESS and ENTROPY [N.Xu, QM’2001] Entropy Pion number T³ Strangeness Phase transition [Gazdiczki & Gorenstein]
26
LP. Csernai, NWE'2001, Bergen25 Strange baryon enhancement m Enhancement of yield in central Pb+Pb compared to p+Be = 15
27
LP. Csernai, NWE'2001, Bergen26 Strange antibaryons In QGP s s-bar threshold is low Strangeness enhance. Hadronic and String models can reproduce this only if: Massive objects are formed – string ropes, quark clusters (QGP) [Quercigh, CERN 2000]
28
LP. Csernai, NWE'2001, Bergen27 Multi Module Modeling Initial state - pre-equilibrium: Parton Cascade; Coherent Yang-Mills [Magas] Local Equilibrium Hydro, EoS Final Freeze-out: Kinetic models, measurables If QGP Sudden and simultaneous hadronization and freeze out (indicated by HBT, Strangeness, Entropy puzzle) 1 2 3
29
LP. Csernai, NWE'2001, Bergen28 Modified Initial State In the previous model the fwd-bwd surface was too sharp two propagating peaks Thus, after the formation of uniform streak, the expansion at its end is included in the model This led to smoother energy density and velocity profiles Z [fm] y e [GeV/ fm 3 ] [Magas, Csernai, Strottman, in pr.]
30
LP. Csernai, NWE'2001, Bergen29 Modified Initial State
31
LP. Csernai, NWE'2001, Bergen30 3-dim Hydro for RHIC Energies Au+Au E CM =65 GeV/nucl. b=0.5 b max A σ =0.08 => σ~10 GeV/fm e [ GeV / fm 3 ] T [ MeV] t=0.0 fm/c, T max = 420 MeV, e max = 20.0 GeV/fm 3, L x,y = 1.45 fm, L z =0.145 fm.. EoS: p= e/3 - 4B/3 B = 397 MeV/fm 3 8.7 x 4.4 fm
32
LP. Csernai, NWE'2001, Bergen31 3-dim Hydro for RHIC Energies Au+Au E CM =65 GeV/nucl. b=0.5 b max A σ =0.08 => σ~10 GeV/fm e [ GeV / fm 3 ] T [ MeV] t=2.3 fm/c, T max = 420 MeV, e max = 20.0 GeV/fm 3, L x,y = 1.45 fm, L z =0.145 fm.. 11.6 x 4.6 fm
33
LP. Csernai, NWE'2001, Bergen32 3-dim Hydro for RHIC Energies Au+Au E CM =65 GeV/nucl. b=0.5 b max A σ =0.08 => σ~10 GeV/fm e [ GeV / fm 3 ] T [ MeV] t=4.6 fm/c, T max = 419 MeV, e max = 19.9 GeV/fm 3, L x,y = 1.45 fm, L z =0.145 fm.. 14.5 x 4.9 fm
34
LP. Csernai, NWE'2001, Bergen33 3-dim Hydro for RHIC Energies Au+Au E CM =65 GeV/nucl. b=0.5 b max A σ =0.08 => σ~10 GeV/fm e [ GeV / fm 3 ] T [ MeV] t=6.9 fm/c, T max = 418 MeV, e max = 19.7 GeV/fm 3, L x,y = 1.45 fm, L z =0.145 fm.. 17.4 x 5.5 fm
35
LP. Csernai, NWE'2001, Bergen34 3-dim Hydro for RHIC Energies Au+Au E CM =65 GeV/nucl. b=0.5 b max A σ =0.08 => σ~10 GeV/fm e [ GeV / fm 3 ] T [ MeV] t=9.1 fm/c, T max = 417 MeV, e max = 19.6 GeV/fm 3, L x,y = 1.45 fm, L z =0.145 fm.. 20.3 x 5.8 fm
36
LP. Csernai, NWE'2001, Bergen35 3-dim Hydro for RHIC Energies Au+Au E CM =65 GeV/nucl. b=0.5 b max A σ =0.08 => σ~10 GeV/fm e [ GeV / fm 3 ] T [ MeV] t=11.4 fm/c, T max = 416 MeV, e max = 19.5 GeV/fm 3, L x,y = 1.45 fm, L z =0.145 fm.. 23.2 x 6.7 fm
37
LP. Csernai, NWE'2001, Bergen36 3-dim Hydro for RHIC Energies Au+Au E CM =65 GeV/nucl. b=0.5 b max A σ =0.08 => σ~10 GeV/fm e [ GeV / fm 3 ] T [ MeV] t=13.7 fm/c, T max = 417 MeV, e max = 19.4 GeV/fm 3, L x,y = 1.45 fm, L z =0.145 fm.. 26.1 x 7.3 fm
38
LP. Csernai, NWE'2001, Bergen37 3-dim Hydro for RHIC Energies Au+Au E CM =65 GeV/nucl. b=0.5 b max A σ =0.08 => σ~10 GeV/fm e [ GeV / fm 3 ] T [ MeV] t=16.0 fm/c, T max = 417 MeV, e max = 19.4 GeV/fm 3, L x,y = 1.45 fm, L z =0.145 fm.. 31.9 x 8.1 fm
39
LP. Csernai, NWE'2001, Bergen38 3-dim Hydro for RHIC Energies Au+Au E CM =65 GeV/nucl. b=0.5 b max A σ =0.08 => σ~10 GeV/fm e [ GeV / fm 3 ] T [ MeV] t=18.2 fm/c, T max = 417 MeV, e max = 19.4 GeV/fm 3, L x,y = 1.45 fm, L z =0.145 fm.. 34.8 x 8.7 fm
40
LP. Csernai, NWE'2001, Bergen39 NEXT Freeze-out Discontinuities in hydro --- Eq. => Eq. Freeze-out to non-eq. Kinetic freeze-out
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.