Presentation is loading. Please wait.

Presentation is loading. Please wait.

Applied Nuclear Physics Group The final meeting of IAEA CRP 2006. 5. 29 – 6. 2 Calculation and Evaluation of (n,  ) Cross Sections for Producing 32 P,

Similar presentations


Presentation on theme: "Applied Nuclear Physics Group The final meeting of IAEA CRP 2006. 5. 29 – 6. 2 Calculation and Evaluation of (n,  ) Cross Sections for Producing 32 P,"— Presentation transcript:

1 Applied Nuclear Physics Group The final meeting of IAEA CRP 2006. 5. 29 – 6. 2 Calculation and Evaluation of (n,  ) Cross Sections for Producing 32 P, 105 Rh, 131 I and 192 Ir H.D. Choi and S.K. Kim Department of Nuclear Engineering, Seoul National University, Korea Nuclear Data for Production of Therapeutic Radionuclides

2 Applied Nuclear Physics Group 2 CRP Workscope  Radioisotopes : 32 P, 105 Rh, 131 I, 192 Ir  Production : 31 P(n,  ) 32 P, 104 Ru(n,  ) 105 Ru, 130 Te(n,  ) 131 Te, 191 Ir(n,  ) 192 Ir  Nuclear structure and decay data : ENSDF  Experimental data : EXFOR  Isomeric states for two isotopes : 131g,m1 Te, 192g,m1,m2 Ir  Thermal and RR region : resonance parameters + NJOY  Unresolved R region : libraries (ENDF/B-VI or JENDL-3.3)  High energy region : TALYS calculation (default) (OMP + other parameters tuning)  Integral data production & validation

3 Applied Nuclear Physics Group 3 32 P Production  Decay scheme of 32 P

4 Applied Nuclear Physics Group 4 32 P Production  Thermal neutron capture cross section of 31 P. AuthorPublication Thermal (n,  ) cross section [b] Seren19470.230(46) Pomerance19510.150(15) Grimeland19550.19(2) Jozefowitz19630.172(8) Kappe19660.1850(74) Ishikawa19730.17(1) Salama19860.143(12) Zeng19890.177(5) Sun (unpublished)20030.166(2) Evaluation (Mughabghab)19810.172(6) This workAveraged cross section0.172(4)

5 Applied Nuclear Physics Group 5  Thermal cross section : 172(4) mb  Resonance parameters : JENDL-3.3  Negative energy resonance parameter tuning : E R = - 5.9 keV,   = 2.07 eV (tuned)  High energy region : 545 keV – 20 MeV TALYS default calculation (local OMP)  Consistency & improvement achieved  EXFOR item (Macklin) at 30 keV : compilation error Derived integral cross section for T = 30 keV Maxwellian Data uncertainty input error 32 P Production

6 Applied Nuclear Physics Group 6 32 P Production  31 P(n,  ) 32 P reaction cross sections

7 Applied Nuclear Physics Group 7  Decay scheme of 105 Ru and 105 Rh 105 Rh Production

8 Applied Nuclear Physics Group 8  Decay data for 105 Ru, ground and isomeric states of 105 Rh 105 Rh Production RadioisotopeHalf-lifeDecay modeMain radiation [keV] (branching ratio) 105 Ru4.44(2) hβ  (100%)  -rays 397.6 (18.8%) 432.2 (47.8%) … 469.37 (17.5%) 724.30 (47.3%) … 105m Rh45 sIT (100%)  -ray CE 129.57 (20%) ce-K, 106.4 (51.3%) ce-L, 126.2 (23.1%) ce-M, 128.9 (4.49%) 105 Rh35.36(6) hβ  (100%)  -rays 69.9 (19.7%) 179.4 (75.0%, decay to ground state 105 Pd) … 306.1 (5.1%) 318.9 (19.1%) … IT : isomeric transition, CE : conversion electron, : average energy of  -rays.

9 Applied Nuclear Physics Group 9 105 Rh Production  Thermal neutron cross section : two EXFOR items only both consistent  466(15) mb  Resonance parameters : Mughabghab +   = 0.14 eV (tuned) at E R = - 941 eV  Unresolved Resonance region (11 – 300 keV) : JENDL  Higher energy region (above 300 keV) : TALYS calculation normalization factor 1.9  14 MeV cross section = 3 mb Wagner(1980,latest) : 0.86(15) mb, average : 1.0(2) mb

10 Applied Nuclear Physics Group 10 105 Rh Production  104 Ru (n,  ) 105 Ru reaction cross sections

11 Applied Nuclear Physics Group 11 131 I production by 131g,m Te  -decay  Decay scheme of 131 Te and 131 I  Two final states of 131 Te 131m Te(30 hr) 182.25 keV, 11/2 -, 77.8%  -decay, 22.2% IT 131g Te(25 m) g. s., 3/2 +, 100%  -decay

12 Applied Nuclear Physics Group 12  Decay data for ground and isomeric states of 131 Te and for 131 I RadioisotopeHalf-lifeDecay modeMain radiation [keV] (branching ratio) 131m Te30(2) h β  (77.8%) IT(22.2%)  -ray CE 182.25 (0.85%) ce-K, 150.4 (14.4%) ce-L, 177.3 (5.44%) … 131g Te25.0(1) mβ  (100%)  -rays 381.1 (9.96%) 614.9 (21.7%) 817.3 (59.3%) … 149.7 (68.8%) 452.3 (18.2%) … 131 I8.02070(11) dβ  (100%)  -rays 96.6 (7.3%) 192 (90%) … 364.5 (82%) 637 (7.2%) … IT : isomeric transition, CE : conversion electron, : average energy of  -rays. 131 I Production

13 Applied Nuclear Physics Group 13 131 I Production  130 Te(n,  ) 131 Te reaction cross section (existing libraries)

14 Applied Nuclear Physics Group 14 131 I Production  Isomeric ratios for thermal neutron capture cross section of 130 Te AuthorPublication Isomeric ratios for thermal neutron capture δ 1 (= σ g /σ m )δ 2 (= σ m /σ g+m ) Seren194727.80.03 Sehgal1962 6.80.13 Mangal196220.4 Namboodiri19660.059(3) Bondarenko20000.053(5) Reifarth20020.067(5) Tomandl-I20030.054(2) Tomandl-II20030.059(4) Evaluation (Mughabghab)198113.50.07(4) This studyAverage160.058(3)

15 Applied Nuclear Physics Group 15 AuthorPublication Thermal neutron capture cross section [mb] σ0σ0 σ0gσ0g σ0mσ0m Seren1947230(44)222(44) < 8(3) Pomerance1952500(250) Sehgal1962310(61)270(60)40(10) Mangal1962161(24) Honzatko1984193(20) Tomandl-12003186(13) Tomandl-22003240(20) Evaluation (Mughabghab)1981290(61)270(60)20(10) This study Averaged cross section 204(10)192(10)12(1) 131 I Production  Thermal neutron capture cross section of 130 Te

16 Applied Nuclear Physics Group 16 131 I Production  Thermal neutron cross section : weighted ave. δ 2 and σ γ0 σ  0 = 204(10) mb, δ 2 (25.3 meV) = 0.058(3)  Resonance parameters : JENDL-3.3 +   = 0.06 eV at E R = - 89.5 eV  Higher energy region (31 keV – 20 MeV) : TALYS calculation Fit to σ tot (E), σ  g+m (E), σ  g (E) by fine tuning OMPs, variation of target nucleus level density parameters, etc.  EXFOR entry (Dovbenko) for σ  g (E) : unit in mb (2 nd CRP)  Improve TALYS prediction for σ tot (E) around 1 MeV  Little improve for σ inel (E) and σ  (E)

17 Applied Nuclear Physics Group 17 131 I Production  A fit to 130 Te+n total reaction cross section  tot (E) A fit (continuous line) Default TALYS result (dash dotted) Fit without normalization (dotted) EXFOR data (symbol).

18 Applied Nuclear Physics Group 18 131 I Production  130 Te(n,  ) 131 Te reaction cross section (this work)

19 Applied Nuclear Physics Group 19 131 I Production  130 Te+n reaction channels cross sections (1 keV - 20 MeV)

20 Applied Nuclear Physics Group 20 131 I Production  Energy variation of optical model potential depths Other parameters : fixed during the fit (a= 0.665 fm, r= 1.22 fm, etc). Final OMPs within 2% change from global OMPs

21 Applied Nuclear Physics Group 21 131 I Production  Branching ratios for 130 Te(n,  ) 131 Te

22 Applied Nuclear Physics Group 22 192 Ir Production  Decay scheme of 192 Ir 1) Odd-odd tri-axially deformed nucleus 192 Ir : isomeric triplet 2) Decay and structure properties for g.s. and 1 st isomeric state : definite 3) 2 nd isomeric state : long-lived isomer First discovery (1959) One(+1?) measurement : discoverer Two measurements on half-life Latest measurement (1991) : theoretical discussion only Spin-parity, level energy and decay : arguments left More measurements needed !

23 Applied Nuclear Physics Group 23 RadioisotopeHalf-lifeDecay modeMain radiation [keV] (branching ratio) 192m2 Ir241(9) y IT (100%)  -ray CE 155.16 (0.0974%) ce-L, 142 (74.6%) ce-M+, 153 (24.6%) ce-K, 79.1 (0.65%) 192m1 Ir1.45(5) m β - (0.0175%) IT (99.9825%) CE  -ray ce-L, 43.3 (72.4%) ce-M, 53.5 (21%) ce-N+, 56.0 (6.5%) 56.71 (0.003%) 192g Ir73.827(13)d β - (95.13%) EC (4.87%)  -rays 71.6 (5.6%) 162.1 (41.4%) 209.9 (48%) … 296.0 (28.7%) 308.5 (29.7%) 316.5 (82.7%) 468.1 (47.8%) … 192 Ir Production  Decay data for ground and isomeric states of 192 Ir

24 Applied Nuclear Physics Group 24 192 Ir Production  Thermal neutron capture cross sections of 191 Ir Author Publication date Thermal neutron capture cross section [b] 00 0g0g   0 m1   0 m2 Seren19471000(200)260(104) Harbottle1963 0.38( ) Keisch1963910(67) 300(30)610(60) Arino19641200(300)300(50) Sims19681120(25) Heft1978922(13) Masyanov1992279(3) Evaluation Mughabghab1984954(10)309(30)645(32)0.16(7) NGATLAS19979543096450.16 EAF20019652736920.16 This work962(11)317(58)645(120)0.13(6)

25 Applied Nuclear Physics Group 25 192 Ir Production  Thermal neutron cross section : weighted ave. σ γ0 isomeric cross sections : branch ratios by Keish(1963)  Resonance parameters : ENDF/B-VI +   = 0.0837 eV at E R = - 0.854 eV  Higher energy region (0.3 keV – 20 MeV) : TALYS calculation Fit to σ  (E) by fine tuning OMPs + normalization  No experimental set for σ tot (E), σ el (E)  TALYS predictions for σ γ g (E), σ γ m1 (E), σ γ m2 (E)

26 Applied Nuclear Physics Group 26 192 Ir Production  191 Ir(n,  ) 192g,m1,m2 Ir cross sections (this work) Total capture cross section The resolved cross sections for ground state and two isomeric states are given separately.

27 Applied Nuclear Physics Group 27 192 Ir Production  TALYS Predicting branching ratios of 191 Ir(n,  ) 192 Ir reaction

28 Applied Nuclear Physics Group 28 67 Cu Production  67 Zn(n,p) 67 Cu cross sections (existing libraries + Qaim)

29 Applied Nuclear Physics Group 29 64 Cu Production  64 Zn(n,p) 64 Cu cross sections (existing libraries + this CRP)

30 Applied Nuclear Physics Group 30 Validation and Integral Quantities  Integral quantities for 31 P(n,  ) 32 P cross section Sources σ  0 (2200 m/s) [b] Maxwellian(300 K ) [b] Resonance integral [b] Fast cross section [b] Fission Spectrum 14 MeV Mughabghab (evaluation) 0.172(6)0.085(10) ENDF/B-VI0.1990.1970.149 1.47  10 -3 3.00  10 -3 JENDL-3.30.166 0.0765 1.01  10 -3 9.90  10 -4 This Work0.172(4)0.1720.0785 8.65  10 -4 5.49  10 -4 EXFOREXFOR Harris 1950~0.10 Macklin 19560.092 Hayodom 19690.144(10)

31 Applied Nuclear Physics Group 31 Validation and Integral Quantities  Integral quantities for 104 Ru(n,  ) 105 Ru cross section Sources σ  0 (2200 m/s) [b] Maxwellian (300 K ) [b] Resonance integral [b] Fast cross section [b] Fission Spectrum 14 MeV Mughabghab (evaluation) 0.32(2)4.3(1) ENDF/B-VI0.437 6.54 3.19  10 -2 9.09  10 -4 JENDL-3.30.323 6.53 3.23  10 -2 1.09  10 -3 This Work0.466(15)0.4666.58 2.51  10 -2 3.04  10 -3 EXFOREXFOR Lantz 19644.6(4) Linden 19726.5(3) Ricabarra 19724.36 Bereznai 19775.9(25) Heft 19787.70(65)

32 Applied Nuclear Physics Group 32 Validation and Integral Quantities  Integral quantities for 130 Te(n,  ) 131 Te cross section Sources σ  0 (2200 m/s) [b] Maxwellian (300 K ) [b] Resonance integral [b] Fast cross section [b] Fission Spectrum 14 MeV Mughabghab (evaluation of total) 0.290(61)0.46(5) ENDF/B-VI (total)0.290 0.344 4.48  10 -3 1.95  10 -3 JENDL-3.3 (total)0.270 0.275 5.56  10 -3 1.00  10 -3 This Work total0.204(10)0.2040.239 2.47  10 -3 1.40  10 -3 ground0.192(10)0.1920.225 2.08  10 -3 8.09  10 -4 isomeric0.012(1)0.0120.015 3.88  10 -3 5.94  10 -4 EXFOREXFOR Ricabarra 19680.48(14) Browne 19730.258(32) Linden 19740.34(3)

33 Applied Nuclear Physics Group 33 Validation and Integral Quantities  Integral quantities for 191 Ir(n,  ) 192 Ir cross section Libraries σ  0 (2200 m/s)[b] Maxwellian (300 K ) [b] Resonance integral I 0 [b] Fast cross section [b] Fission14 MeV Mughabghab(evaluation)954(10)3500(100) ENDF/B-VI95595234240.185 6.08  10 -3 JEFF-3.195895434230.185 6.08  10 -3 This Work Total962(11)9593429 4),5) 0.181 2.06  10 -3 Ground317(58)3161132 4) 0.110 1.50  10 -3 Meta1645(120)6422296 4),6) 0.070 2.79  10 -4 Meta20.13(6)0.130.46 4) 8.04  10 -4 2.78  10 -4 EXFOREXFOR Harris 19503270(230) 1) Sims 19684800(240) 1) Koehler 19684074(285) 2), 940(160) 3) Linden 19743480(382) 4) Heft 19785320(480) 1) Masyanov 19923410(70) 1)

34 Applied Nuclear Physics Group 34 Validation and Integral Quantities  Integral quantities for 191 Ir(n,  ) 192 Ir cross section 1) Lower limit of resonance integral = 0.5 eV, 2) Lower limit of resonance integral = 0.62 eV, 3) Value for the 1st isomeric state with lower integral limit 0.62 eV, 4) Lower limit of resonance integral = 0.55 eV, 5) I 0 tot (0.50eV) = 3558 b, I0tot(0.62eV) = 2940 b, 6) I 0 m1 (0.62eV) = 1969 b.

35 Applied Nuclear Physics Group 35 Validation and Integral Quantities  Integral quantities for 67 Zn(n,p) 67 Cu cross section Sources Spectrum averaged cross section [mb] FissionCf-252 *) Others Library Qaim calculation (STAPRE) [47] 1.321.4835.8 **) JEFF-3.1/A [21]1.021.1342.8 **) JENDL-Act.[46]1.021.1536.4 **) EvaluationCalamand 1974 [49]1.07(4) MeasurementHoribe 1989 [48]1.01(9) Brodskaja 19770.92(7) Spahn 2004 [50]5.13(87)  ) *) Cf-252 neutron spectrum with effective temperature T=1.42 MeV and integration limit from 1 keV to 20 MeV were used. **) 14 MeV neutron spectrum with the same integration limit was used.  ) 14 MeV d(Be) neutron spectrum.

36 Applied Nuclear Physics Group 36 Validation and Integral Quantities  Integral quantities for 64 Zn(n,p) 64 Cu cross section Sources Spectrum averaged cross section [mb] FissionCf-252 *) Others LibraryRNAL (Qaim adoption)40.444.5201 **) JEF-2.244.248.4193 **) IRDF-200238.742.4177 **) RRDF-2006 [51]39.343.1178 **) EvaluationCalamand 1974 [49]31.0(23) Mannhart 1989 [53]40.47(75) Mannhart 2003 [54]40.59(67) MeasurementCohen 2005 [52]37.4(14) Kobayashi 199031.7(18) Benabdallah 198538.2(15) Kobayashi 198441.8(17) Spahn 2004 [50]132(25)  )

37 Applied Nuclear Physics Group 37 Much thanks to Dr. Dad. Jean Sublet, Arjan Koning, and Everyone !!!


Download ppt "Applied Nuclear Physics Group The final meeting of IAEA CRP 2006. 5. 29 – 6. 2 Calculation and Evaluation of (n,  ) Cross Sections for Producing 32 P,"

Similar presentations


Ads by Google