Presentation is loading. Please wait.

Presentation is loading. Please wait.

Low-energy physics in France SIRa at GANIL ̵ charge radius of 6 He LIRAT at SPIRAL1/GANIL ̵  angular correlations: LPCTrap ̵ mirror  decays ̵ branching.

Similar presentations


Presentation on theme: "Low-energy physics in France SIRa at GANIL ̵ charge radius of 6 He LIRAT at SPIRAL1/GANIL ̵  angular correlations: LPCTrap ̵ mirror  decays ̵ branching."— Presentation transcript:

1 Low-energy physics in France SIRa at GANIL ̵ charge radius of 6 He LIRAT at SPIRAL1/GANIL ̵  angular correlations: LPCTrap ̵ mirror  decays ̵ branching ratio measurements of 0 + - 0 +  decays ̵ spectroscopy of proton-rich nuclei: GT strength distribution ALTO at Orsay ̵ nuclear structure studies DESIR and S3-LEB at GANIL ̵ the future ISOL facilities of GANIL Bertram Blank CEN Bordeaux-Gradignan NuPPEC mini-workshop, GANIL, 09/10/2015

2 LIRAT LPCTrap Production target ECR source Beams characteristics: 10-30 keV, 80  mm mrad SPIRAL1 beams: 10-30 keV  E ~ 20eV SIRa and LIRAT at GANIL SIRa beams: 10-30 keV  E ~ 20eV

3 SIRa: Charge radii of 6 He and 8 He

4 laser spectroscopy in a MOT:  = A – A’ =  mass +  charge 6 He: 10 8 pps 8 He: 5*10 5 pps P. Mueller et al.

5 SPIRAL1 beams

6 SPIRAL1 / LIRAT beams Nanogan ECR source presently in operation FEBIAD ion source Part of SPIRAL1 upgrade Surface ionisation source Expected yields: P. Delahaye et al.

7 LIRAT: weak-interaction studies  angular correlation measurements mirror  decays 0 + - 0 +  decay

8 a  Test of V - A theory: a (C S, C V, C T, C A ) Pure GT: a GT (C T, C A ) Pure F: a F (C S, C V ) parameters: M, T 1/2, BR am am  Naviliat & Severijns PRL102(2009) Mirror decays= alternative to 0 +  0 + Severijns et al. RMP78(2006) Goals Current limits: C T /C A < 9% C S /C V < 7% (allowed transitions, non-oriented nuclei) Mirror decays: Transition|V ud | Super-allowed pure Fermi Neutron Pion Super-allowed mirror 0.97425 (22) 0.9746 (13) 0.9728 (30) 0.9719(17)  Determination of V ud, test of CKM unitarity: Standard Model tests with  decay

9 9 HV Pulsed cavity Paul Trap RFQ (Cooling & bunching) Pulsed cavity 10 keV100 eV - <1 eV1 keV100 eV0 eV KE ion :  KE: ~20 eV~1 eV~0.1 eV Buffer-gas: H 2 ( He for heavier nuclei ) accumulation: 200ms (cycle) ~2×10 8 6 He + /s ~2×10 4 6 He + /cycle Total efficiency: ~5×10 -4 Beam from LIRAT LPCTrap at LIRAT X. Fléchard, E. Liénard et al.

10 Tensor contribution: First result:  GT: 6 He ( Johnson et al., PRC 1963 )  a GT = -0.3308 (30) Current limits: C T /C A < 9% Severijns & Naviliat PST152(2013) Tensor contribution: New result: Fléchard et al., JPG 38 (2011) a  = - 0.3335 (73) stat (75) syst (  a GT / a GT ) expected ~ 0.63 %  angular correlations with LPCTrap: 6 He

11 parameters to be measured: M (f V ), T 1/2, BR and    = GT/F : least or even unknown quantity Mirror  decays: CVC and V ud

12 Preliminary results from LPCTrap Couratin et al. PRA (2013) 74.6 (1.0) % 17.3 (0.4) % 5.7 (0.2) % 1.7 (0.2) % < 1 % 87.5 (0.9) % 11.8 (0.3) % 0.7 (0.2) % 35 Ar: 19 Ne: (  a m / a m ) expected ~ 0.25 % (  a m / a m ) expected ~ 18 %

13 Precision T 1/2 measurement of mirror nuclei 17 F 21 Na 33 Cl improvements achieved: J. Grinyer et al.

14 Super-allowed  decay: 0+ → 0+ 14 best known cases…

15 Super-allowed  decay: 0+ → 0+ 18 Ne added…

16 Super-allowed  decay: 0+ → 0+ of 18 Ne BR = 7.285(51)% H. Bouzomita, G.F. Grinyer, J.-C. Thomas et al.

17 Super-allowed  decay: 0+ → 0+ of 18 Ne H. Bouzomita, G.F. Grinyer, J.-C. Thomas et al. 18 Ne

18 LIRAT: nuclear structure studies Gamow-Teller strength distribution 33 Ar

19 Experimental setup: Silicon cube detector 6 DSSSDs with 16 * 16 strips 50 cm x 50 cm 6 Plenar silicon detector 50 cm x 50 cm 3 EXOGAM clover detectors I. Matea et al., NIM A607 (2009) 576

20 Proton and  -ray spectra from 33 Ar proton singles spectrum protons spectrum avec  coincidence  -ray spectrum N. Adimi et al., PRC81 (2010) 024311 33 Ar

21 Quasi complete decay scheme Experiment N. Adimi et al., PRC81 (2010) 024311

22 Gamow-Teller strength distribution 33 Ar N. Adimi et al., PRC81 (2010) 024311

23 ALTO: nuclear structure studies

24 PARRNe mass separator e-LINAC 10 µA 50MeV (former 1 st section of the CERN LEP injector) TIS vault >~1.10^11 fissions/s Target Ion-source ensemble kicker - bender secondary beam lines Hall 110 experimental setups identification station BEDO beta decay spectroscopy ALTO : the e-driven ISOL facility in Orsay D. Verney et al.

25 LASER ION SOURCE refractory Lanthanide Region Semi refractory (slow release from UCx) Semi refractory The variety of the physics program at ALTO strongly depends on RIB availability, intensity and purity IN-TIS CHIMISTRY fluorination efficiency, Z-selectivity improvement first successfully laser ionized beam Phys. Rev. C 88, 047301 (2013) Progress in beam availability and diversity D. Verney et al.

26 BEDO setup neutron detection TETRA fast timing LaBr3 up to 5 Ge detectors (ε = 5-6%) 4π β trigger 80 3 He tubes ε( 252 Cf) = 53% borated polyethylene shielding Fast-timing studies using LaBr 3 detectors A. Etilé, D. Verney et al Phys. Rev. C 91, 064317 (2015) PhD: D. Testov (IPN) submitted to NIM A M.A. Cardona, D. Hojman, B. Roussière, I. Deloncle et al. to be submitted to EPJ A Nuclear structure in  decay

27 Heyde & Wood, Rev. Mod. Phys. 83 (2011) shape coexistences: a general phenomenon? 50 ? 82 Ge→ 82 33 As 49 problem of the spectral distribution of 1 + states in the N=50 region: → responsible for the half-life of the mother nucleus, possible consequences on the r-process) interpreted by the theoretical work of Severyukhin… Giai et al. (influence of couplings to 2p-2h and tensor interaction) ubiquitous presence of intruder states of the type 1p-2h → signature of shape coexistence νg 9/2 50 νd 5/2 1+ 1p-2h conclusion: an «island of inversion» is « missed » at N=50 by 0.5 MeV only ! Though this phenomenon seems to concern all shell- closure regions: not a single study at N=50 for more than 3 decades! (Z=50 a textbook case) A. Etilé et al., Phys. Rev. C 91, 064317 (2015) Results from BEDO in  -delayed γ-spectroscopy mode

28 BEDO/TETRA (existing) LINO (project) TAS (project) TETRA (existing) Identification station Parrne mass separator POLAREX (project) MLL Trap (project) LTNO ( 3 He/ 4 He) Mass measurements Laser-Induced nuclear orientation (µ,Q, J  ) Present setups and near-future projects

29 DESIR - S3-LEB: low-energy facilities for GANIL

30 SPIRAL1 S3S3  From -9.8 to +7.15 m; 4 levels  ~ 2200 m 2 (hall = 1200 m 2 )  Exp. Hall at -3.25 m Facility layout 2016 2018 2020

31 Update of the scientific program http://www.cenbg.in2p3.fr/desir/-DESIR-S3-LEB-workshop- Laser spectroscopy  -delayed  spectroscopy  - angular correlation Mass measurements  -delayed charge part.,  -n emission (Trap-assisted)  -decay, Full absorption spectroscopy Laser spectroscopy  -delayed  spectroscopy  - angular correlation Mass measurements  -delayed charge part.,  -n emission (Trap-assisted)  -decay, Full absorption spectroscopy S 3 -LEB SPIRAL 1 Upgrade SPIRAL 2 Phase 2  letters of intent presented at the joint DESIR – S 3 -LEB workshop (GANIL, March 2014) 100 Sn A~150 Very (Super)-heavy N~Z Fundamental interactions Closed shells (Z≤28, N≤28; N=50) -n Physics programme

32 Conclusions  rich physics programme  DESIR with S3-LEB and SPIRAL1 (upgraded “SPIRAL1+” and possible future upgrades “SPIRAL1++”) will allow for an exciting low-energy programme  pity that SPIRAL2 phase it “postponed” until 2025 Thank you for your attention

33

34 List of DESIR (updated) LoIs presented at the DESIR – S 3 -LEB workshop held at GANIL in March 2014 In-trap decay studies 1. E. Liénard et al., LPC Caen, “High precision measurement in mirror  decays to test the CVC hypothesis and the CKM unitarity” 2. X. Fléchard et al., LPC Caen, “Search for exotic couplings using precision measurements of nuclear  decay” 3. P. Delahaye et al., GANIL, “Test of the time reversal symmetry in the beta decay of 23 Mg and 39 Ca using an in-trap polarization method at DESIR” 4. B. Blank et al., CENBG, “Search for scalar currents with  -delayed proton emitters” 5. S. Grévy et al., CENBG, “In-trap decay spectroscopy to measure neutron energies” Radioactive decay studies 6. T. Kurtukian Nieto et al., CENBG, “High precision measurements of half-lives and branching ratios in mirror  decay” 7. H. Guérin et al., CENBG, “High precision studies of the super-allowed beta decay of T z = 0, -1 and -2 nuclei” 8. J. Giovinazzo et al., CENBG, “Study of the beta-delayed two-proton decay” 9.A. Algora et al., IFIC Valencia, “Beta strength measurements in the 100 Sn region” 10.B. Blank et al., CENBG, “Search for cluster radioactivity in the region above 100 Sn” Laser spectroscopy 11. T. Cocolios et al., Univ. Manchester, “From N=Z=28 to the proton drip line at LUMIERE” 12. M. Bissell et al., IKS Leuven, “Collinear laser spectroscopy of neutron deficient isotopes of Ag and Sn across the N=50 shell closure” 13.D. Yordanov et al., IPN Orsay, ”Laser spectroscopy of very neutron deficient indium and cadmium isotopes” Mass measurements 14.Ch. Weber et al., LMU Munich, “Mass Measurements with MLLTRAP at DESIR: Transfermium nuclides & super-allowed  emitters revisited” 15.D. Lunney et al., CSNSM Orsay, “The mass of 100 Sn and the extraordinary binding of N = Z nuclides” 16.M. MacCormick et al., IPN Orsay, “High-resolution mass measurements of odd-odd T=1 nuclides” 17.D. Lunney et al., CSNSM Orsay, “Mass measurements for SPIRAL2 - phase 1+: mapping the proton drip line in the A=150 region” 18.P. Ascher et al., MKPI Heidelberg, “Mass measurement of light nuclei using an MR-TOF-MS or a Penning Trap @ DESIR” Status of the DESIR project SPIRAL 1 Upgrade SP1-U S 3 -LEB SP1-U  8 LoI with upgraded SPIRAL1 beams and 10 with S 3 -LEB beams DESIR Steering Committee and Collaboration Council meeting, 10/10/14 - GANIL, Caen

35 Status of the DESIR project Budget Cost estimates (Sept. 2015):  Building (2180 m 2 ): 15.9 M€  Beam lines (~140 m): 5.6 M€  RFQ and HRS: 2.5 M€ Total (10% overheads): 21.5 M€ Funding: EQUIPEX: 8.0 M€ Franco-german agreement:13.5 M€ CPER: 2.0 M€ DESIR Steering Committee and Collaboration Council meeting, 10/10/14 - GANIL, Caen

36 1)continuous progress in beam availability and diversity 2)continuous progress in instrumentation availability and diversity ALTO - the first photo-fission ISOL facility recent achievements and short-term perspectives Stable + ISOL beams ~ 4000 h per year (parallel beams) ~250 external users (30 countries)/year ALTO TNA within ENSAR and ENSAR2

37  -delayed γ-spectroscopy has been performed since the dawn of the ALTO project some of the experiments were largely pioneering at there time the problems addressed up to now were centered around the evolution of the N=50 shell closure towards 78 Ni ALTO – official start of the facility in 2012

38 132 Sn 100 Sn rp process r process more accurate theoretical lifetimes of the N=82 isotones below 129 Ag shell quenching vs deformation shell effect in radii  - delayed spectroscopy of laser-polarized beams ground and isomeric state properties of 110-126 Ag and 128-133 In β-decay of polarized 121-126 Ag and 128-133 In LINO: Laser-induced nuclear orientation D. Yordanov et al.

39 polarisation by optical pumping µ & Q from nuclear magnetic resonance β-delayed spectroscopy of laser-polarized beams LINO: Laser-induced nuclear orientation


Download ppt "Low-energy physics in France SIRa at GANIL ̵ charge radius of 6 He LIRAT at SPIRAL1/GANIL ̵  angular correlations: LPCTrap ̵ mirror  decays ̵ branching."

Similar presentations


Ads by Google