Download presentation
Presentation is loading. Please wait.
Published byJade Walton Modified over 9 years ago
1
Review 5.1-5.3 Calculus (Make sure you study RS and WS 5.3)
2
Given f ’(x), find f(x) f’(x)
3
Given f ’(x), find f(x) f’(x)
4
Basic Integration Rules Rule 1: (k, a constant) Example 2: Example 3: Keep in mind that integration is the reverse of differentiation. What function has a derivative k? kx + C, where C is any constant. Another way to check the rule is to differentiate the result and see if it matches the integrand. Let’s practice.
5
Rule 2: The Power Rulen Example 4: Find the indefinite integral Solution: Example 5: Find the indefinite integral Solution: Basic Integration Rules
6
Example 6: Find the indefinite integral Solution: Example 7: Find the indefinite integral Solution: Example 8: Find the indefinite integral Solution: Here are more examples of Rule 1 and Rule 2.
7
Evaluate Let u = x 2 + 1 du = 2x dx
8
Multiplying and dividing by a constant Let u = x 2 + 1 du = 2x dx Let u = 2x - 1 du = 2dx
9
Substitution and the General Power Rule What would you let u = in the following examples? u = 3x - 1 u = x 2 + x u = x 3 - 2 u = 1 – 2x 2 u = cos x
10
Example 5a. Find Solution: Pick u. Substitute and integrate:
11
Example 2a. Find Solution: What did you pick for u? u = 3x + 1 du = 3 dx Substitute: You must change all variables to u. Just like with derivatives, we do a rewrite on the square root.
12
Example 3a. Find Solution: Pick u. Substitute, simplify and integrate:
13
Find the indefinite integral: 1.) 2.)
14
Use the log rule to find the indefinite integral 1.) 2.)
15
Find the indefinite integral: 1.) 2.)
16
Find the indefinite integral: 1.) 2.) x+ 3 8
17
A population of bacteria is growing a rate of where t is the time in days. When t = 0, the population is 1000. A.) Write an equation that models the population P in terms of t. B.) What is the population after 3 days? C.) After how many days will the population be 12,000? When t = 0, P(t) = 1000, therefore C = 1000 About 7,715 6 Days
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.