Presentation is loading. Please wait.

Presentation is loading. Please wait.

Introduction to Foundation Engineering

Similar presentations


Presentation on theme: "Introduction to Foundation Engineering"— Presentation transcript:

1 Introduction to Foundation Engineering
By: Alka Shah Civil Engineering Department Institute of Technology Nirma University

2 Hiding world of Geotechnical Engineering
Geotechnical Eng. Structures… Buried right Under your Feet…!!

3 Terzaghi says: (Father of Soil Mechanics) Unfortunately, soils are made by nature and not by man, and the products of nature are always complex… Natural soil is never uniform… Karl Terzaghi ( )

4

5 Teaching Scheme Exam Weightage Exam Hours CE LPW SEE 0.40 0.20 3
Lectures/week : 3 Practical/week 2 Credit 4

6 Syllabus Soil Investigations: Methods of exploration, exploratory borings, sampling methods, disturbed and undisturbed samples, penetration tests, miscellaneous methods of exploration, record of field exploration and laboratory tests, soil investigation reports, testing in rocky strata, plate load test. Types of Foundation : Shallow foundation ‐ isolated footing, combined footing, strap footing, strip footing, raft foundation, Deep foundation ‐ well foundation, pile foundation, floating foundations; factors affecting choice of foundation, Design of Foundation : Design of shallow foundation ‐ isolated, combined, raft foundation and deep foundation pile and well foundation, foundation subjected to lateral loads Bearing Capacity of Foundation: Bearing capacity of shallow and deep foundations based on shear and settlement criteria, bearing capacity in sandy and clayey strata, factors affecting soil bearing capacity, bearing capacity from penetration tests, bearing capacity of rock.

7 Consolidation of soils: Consolidation, compressibility of soils, settlement analysis, Terzaghi’s one dimensional consolidation theory, settlement characteristics of clay & its evaluation. Settlement of Foundation: Causes of settlement, settlement on sandy strata, clayey strata, layered soil, factors affecting settlement, control of settlement. Earth Pressure and Retaining Structures : Active and passive earth pressure due to cohesive soil, noncohesive soil, submerged soil, level and inclined backfill, Rankine’s theory, Coulomb’s theory, pressure calculations for retaining walls, design of sheet piling. Stability of Slopes: Stability of slope in cohesive and noncohesive soils, factor of safety, methods for analysis of stability of slopes. Ground Improvement Techniques : Drainage, dewatering , grouting, compaction, stabilization of soils, Lime and Cement stabilization, use of Geosynthetics, vibroflotation, sand pile, reinforced earth structure, rock anchors etc. Introduction to Machine foundation Introduction to advances in Geotechnical engineering

8 List of Reference books
Coduto D.P., Foundation design; principles and practices, Pearson Publication Bowles J.W., Foundation Analysis and Design, Tata Mc-Graw Hiill Braja M Das, Principles of Foundation Engineering, C.B.S Publishers Arora K.R., Soil Mechanics and Foundation Engg, Standard Publication Murthy V.N.S., Advanced Foundation Engineering, Global Engineering Gulhati S.K. and Datta M., Geotechnical Engineering, Tata Mc-Graw Hiill Khan I.N., Text book of Geotechnical Engineering, PHI Learning

9 PROGRAMME EDUCATIONAL OBJECTIVES (PEOs):
To prepare graduates in Civil Engineering for successful careers dealing with analysis, design and management of infrastructural projects both in India and Abroad. It must alsonhelp them to develop an intelligent understanding of the theoretical bases of various codal provisions in design, construction and maintenance. To provide the students with a comprehensive and balanced understanding of the several branches of Civil Engineering such as Structural Engineering, Geotechnical Engineering, Transportation Engineering, Hydraulic and Water Resources Engineering, Environmental Engineering and Engineering breadth to create novel products and solutions for the real-life problems. To provide opportunities to students to work in interdisciplinary projects across the various branches of Civil Engineering. To provide students with a sound foundation in mathematical and scientific subjects which are necessary prerequisites for a clear and sound understanding of Civil Engineering as a whole and to encourage those students who are motivated to go for Postgraduate programmes in the branch of their interest. Those wishing to enter services through competitive examination should also be encouraged. To create an understanding among the student body the values of life-long learning and to inculcate in them professional ethics, moral values and social concern.

10 Programme Outcomes: (POs)
a) Graduates will demonstrate a sound knowledge of basic mathematics and sciences as building blocks of the Civil Engineering discipline. b) Graduates will demonstrate ability to conduct tests, interpret the results and report them in a professional format. c) Graduates will demonstrate the ability to design Civil Engineering systems following specifications and meeting individual requirements. d) Graduates will demonstrate their ability as productive members of interdisciplinary design teams. e) Graduates will have the ability to identify problems and find solutions for them in the most cost-effective manner.

11 f) Graduates will display an understanding of their professional responsibilities meeting ethical standards. g) Graduates will be able to communicate in both verbal and written forms and make effective presentations. h) Graduates will have the confidence to apply engineering solutions, addressing social concerns. i) Graduates will be capable of self-education and clearly understand the value of life-long learning. j) Graduates will demonstrate an understanding of the impact of Civil Engineering of society in enhancing the quality of life of the people. k) Graduates will be familiar with modern Civil Engineering professional software tools and demonstrate their ability in applying them for the solution of design situations they face.

12 Expected Course Learning Outcomes (CLO)
After successful completion of the course, student will be able to Investigate various types of soils through exploration methods and to compute bearing capacity Identify, assess, recommend and design deep and shallow foundation Calculate factor of safety for stability of slope and ground improvement techniques

13 Mapping of Course Learning Outcomes with Programme Outcomes
PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 CLO1 S P - CLO2 W CLO3 S : Strong (60% - 80%), M : Moderate (40% - 60%) , P : Partial (20% - 40%)

14 Mapping of Course with Programme Outcomes
Course Name PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 Foundation Engineering S W - S : Strong (60% - 80%), P : Partial (40% - 60%) , W : Weak (20% - 40%)

15 Syllabus Covered by Prof. Alka Shah
Earth pressure Bearing Capacity Design of Foundation Pile Foundation Ground Improvement Technique use of Geosynthetics Soil Dynamics Geophysical methods Introduction to Machine foundation Introduction to soil structure Interaction

16 REVISION

17 Soil index properties Consistency limits Permeability Compaction Shear strength

18

19


Download ppt "Introduction to Foundation Engineering"

Similar presentations


Ads by Google