Download presentation
Presentation is loading. Please wait.
Published byAda Garrison Modified over 9 years ago
1
Grupo de Espectroscopía Molecular, Lab. De Espectroscopia y Bioespectroscopia Edificio Quifima, Unidad Asociada CSIC, Universidad de Valladolid Valladolid, Spain Cis-METHYL VINYL ETHER: THE ROTATIONAL SPECTRUM UP TO 600 GHz Lucie Kolesniková, Adam M. Daly, José L. Alonso International Symposium on Molecular Spectroscopy, June 16 20, 2014 Champaign-Urbana, Illinois, USA
2
Gas-phase reactions leading from alcohols to ethers a Introduction and motivation a S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ. 448 (1995) CH 3 OH CH 3 OH 2 + (CH 3 ) 2 OH + (CH 3 ) 2 O H 3 +, H 3 O + CH 3 OH e- HCO + C 2 H 5 OH C 2 H 5 OH 2 + (C 2 H 5 ) 2 OH + (C 2 H 5 ) 2 O HCO + e- H3O+H3O+ CH 3 OC 2 H 6 + CH 3 OC 2 H 5 e- C 2 H 5 OH CH 3 OH C 2 H 5 OH
3
Gas-phase reactions leading from alcohols to ethers a Introduction and motivation a S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ. 448 (1995); b Z. Peeters, S.D. Rodgers, S.B. Charnley, L. Schriver-Mazzuoli, A. Schriver, J.V. Keane, P. Ehrenfreund, A&A 445 (2006) 197-204; c Y.-J. Kuan, S.B. Charnley, T.L. Wilson, M. Ohishi, H.-C. Huang, L.E. Snyder, Bull. Am. Astron. Soc. 31 (1999) 942; d G.W. Fuchs, U. Fuchs, T.F. Giesen, F. Wyrowski, A&A 444 (2005) 521–530. CH 3 OH CH 3 OH 2 + (CH 3 ) 2 OH + (CH 3 ) 2 O H 3 +, H 3 O + CH 3 OH e- HCO + C 2 H 5 OH C 2 H 5 OH 2 + (C 2 H 5 ) 2 OH + (C 2 H 5 ) 2 O HCO + e- H3O+H3O+ CH 3 OC 2 H 6 + CH 3 OC 2 H 5 e- C 2 H 5 OH CH 3 OH C 2 H 5 OH detected b tentatively detected c detected d
4
Gas-phase reactions leading from alcohols to ethers a CH 3 OH Introduction and motivation CH 3 OH 2 + (CH 3 ) 2 OH + (CH 3 ) 2 O H 3 +, H 3 O + CH 3 OH e- HCO + C 2 H 5 OH C 2 H 5 OH 2 + (C 2 H 5 ) 2 OH + (C 2 H 5 ) 2 O HCO + e- H3O+H3O+ CH 3 OC 2 H 6 + CH 3 OC 2 H 5 e- C 2 H 5 OH CH 3 OH C 2 H 5 OH a S.B. Charnley, M.E. Kress, A.G.G.M. Tielens, T.J. Millar, ApJ. 448 (1995); b Z. Peeters, S.D. Rodgers, S.B. Charnley, L. Schriver-Mazzuoli, A. Schriver, J.V. Keane, P. Ehrenfreund, A&A 445 (2006) 197-204; c Y.-J. Kuan, S.B. Charnley, T.L. Wilson, M. Ohishi, H.-C. Huang, L.E. Snyder, Bull. Am. Astron. Soc. 31 (1999) 942; d G.W. Fuchs, U. Fuchs, T.F. Giesen, F. Wyrowski, A&A 444 (2005) 521–530; e B.E. Turner, A.J. Apponi, ApJ 561 (2001) L207-L210. detected b tentatively detected c detected d CH 2 CHOH detected e CH 3 OCHCH 2 in the ISM ??? data only up to 40 GHz
5
Experimental details Double pass configuration (50 – 170 GHz)
6
Experimental details Double pass configuration (50 – 170 GHz)
7
Experimental details Double pass configuration (50 – 170 GHz)
8
Experimental details Double pass configuration (50 – 170 GHz)
9
Experimental details Double pass configuration (50 – 170 GHz)
10
Experimental details Single pass configuration (170 – 1000 GHz)
11
Experimental details Single pass configuration (170 – 1000 GHz)
12
Experimental details Single pass configuration (170 – 1000 GHz) 50 – 600 GHz room temperature 20 bar
13
Rotational spectra and analysis a = 0.295 (2) D b = 0.910 (2) D
14
Rotational spectra and analysis a = 0.295 (2) D b = 0.910 (2) D 23 (A’’) 24 (A’’) 16 (A’) 24 234 cm 1 23 244 cm 1 16 327 cm 1 a B. Cadioli, E. Gallinella, U. Pincelli, J. Mol. Struct. 78 (1982) 215 - 228. Vib. modes below 400 cm 1 : a
15
Rotational spectra and analysis
16
ground state v 24 = 1 v 23 = 1v 16 = 1
17
Rotational spectra and analysis cent (MHz) (MHz)
18
Rotational spectra and analysis G.S. 1 0 v 24 = 1 1 0 v 23 = 1 1 0 v 16 = 1 1 0 cent (MHz) (MHz)
19
Rotational spectra and analysis Ground state > 2 800 transitions (J’’ = 69, K a ’’ = 25) Watson’s A-reduced Hamiltonian (I r -representation) v 24 = 1 and v 23 = 1 excited states failure of the Watson’s semirigid Hamiltonian IR data a : E = E 23 E 24 10.5 cm 1 a B. Cadioli, E. Gallinella, U. Pincelli, J. Mol. Struct. 78 (1982) 215 - 228.
20
Rotational spectra and analysis E red = E E 24 J(J + 1)(B + C)/2 E red (cm 1 ) ss 8 12 0, 1 16
21
Rotational spectra and analysis E red = E E 24 J(J + 1)(B + C)/2 E red (cm 1 ) ss 8 12 0, 1 16 K a = 0 0, 1 K a = 0 0, 1 1, 2 8 5 2, 3 3, 4
22
Rotational spectra and analysis E red = E E 24 J(J + 1)(B + C)/2 E red (cm 1 ) ss 8 12 0, 1 16 K a = 0 0, 1 K a = 0 0, 1 1, 2 8 5 2, 3 3, 4
23
Rotational spectra and analysis v 24 = 1 and v 23 = 1 excited states 23 (A’’) 24 (A’’) C s symmetry (v 24 = 1) (v 23 = 1) (J c ) = A’ c-type Coriolis Fermi-type H C (24,23) = iG c J c + F ab (J a J b + J b J a ) + … H F (24,23) = W F + W F J J 2 + W F K J a 2 +W ± (J b 2 – J c 2 ) + …
24
Rotational spectra and analysis v 24 = 1 and v 23 = 1 excited states > 1 200 transitions J’’ = 61, K a ’’ = 10 for v 24 = 1 and J’’ = 59, K a ’’ = 6 for v 23 = 1 E = 10.204550 (3) (cm 1 )
25
Rotational spectra and analysis v 23 = 1, K a = 1 v 23 = 1, K a = 0 v 24 = 1, K a = 2 v 24 = 1, K a = 3
26
Rotational spectra and analysis v 24 = 1 and v 23 = 1 excited states V 3 = 1256 cm –1 b v 23 = 1 state: higher K a, Q-branches transitions affected by the perturbations with v 24 = 1 state v 24 = 1 state : only those affected by perturbations with v 23 = 1 state b R. Meyer, T.K. Ha, M. Oldani, W. Caminati, The Journal of Chemical Physics 86 (1987) 1848-1857.
27
Rotational spectra and analysis v 24 = 1 and v 23 = 1 excited states V 3 = 1256 cm –1 b v 23 = 1 state: higher K a, Q-branches perturbation induced splitting v 23 = 1, K a = 0 v 24 = 1, K a = 3 v 24 = 1, K a = 3 ← 2v 23 = 1, K a = 0 ← 1
28
Rotational spectra and analysis v 24 = 1 and v 23 = 1 excited states V 3 = 1256 cm –1 b v 23 = 1 state: higher K a, Q-branches perturbation induced splitting v 23 = 1, K a = 0 v 24 = 1, K a = 3 v 24 = 1, K a = 3 ← 2v 23 = 1, K a = 0 ← 1
29
Rotational spectra and analysis v 16 = 1 excited state isolated state > 500 transitions (J’’ = 69, K a ’’ = 25) A-reduction (I r -representation) 16 (A’)
30
Results Ground statev 24 = 1v 23 = 1v 16 = 1 A(MHz)18224.9674 (1)18223.0348 (6)18301.885 (3)18395.7066 (9) B(MHz)6388.99209 (3)6359.0805 (1)6330.9952 (5)6365.8442 (2) C(MHz)4875.85998 (3)4875.1527 (1)4855.6034 (1)4854.33587 (9) JJ (kHz)3.85336 (2)3.8690 (1)3.7446 (4)3.8669 (1) JK (kHz)–11.5212 (1)–11.502 (2)–10.112 (8)–13.760 (2) KK (kHz)49.5624 (3)49.165 (7)49.74 (6)56.44 (1) JJ (kHz)1.183668 (7)1.18187 (7)1.1392 (2)1.20168 (7) KK (kHz)6.2388 (2)5.240 (4)4.69 (1)8.540 (2) JJ (mHz)–1.138 (4)[–1.138] … JK (mHz)71.9 (1)[71.9] 160 (1) KJ (mHz)–450.0 (4)[–450.0] –790 (14) KK (mHz)883.5 (5)[883.5] 1300 (31) JJ (mHz)–0.243 (1)[–0.243] 0.208 (8) JK (mHz)10.58 (8)[10.58] KK (mHz)254 (1)[254] 1321 (34) EE (MHz) 305924.7 (1) (cm –1 ) 10.204550 (3) GcGc (MHz) [1381] GcJGcJ (MHz) 0.00662 (1) GcKGcK (MHz) –0.502 (1) F ab (MHz) –7.197 (4) F ab K (MHz) –0.00275 (2) W±W± (MHz) 1.19453 (5) G c KK (MHz) 0.000077 (2) fit (kHz)32 5832
31
Results Ground statev 24 = 1v 23 = 1v 16 = 1 A(MHz)18224.9674 (1)18223.0348 (6)18301.885 (3)18395.7066 (9) B(MHz)6388.99209 (3)6359.0805 (1)6330.9952 (5)6365.8442 (2) C(MHz)4875.85998 (3)4875.1527 (1)4855.6034 (1)4854.33587 (9) JJ (kHz)3.85336 (2)3.8690 (1)3.7446 (4)3.8669 (1) JK (kHz)–11.5212 (1)–11.502 (2)–10.112 (8)–13.760 (2) KK (kHz)49.5624 (3)49.165 (7)49.74 (6)56.44 (1) JJ (kHz)1.183668 (7)1.18187 (7)1.1392 (2)1.20168 (7) KK (kHz)6.2388 (2)5.240 (4)4.69 (1)8.540 (2) JJ (mHz)–1.138 (4)[–1.138] … JK (mHz)71.9 (1)[71.9] 160 (1) KJ (mHz)–450.0 (4)[–450.0] –790 (14) KK (mHz)883.5 (5)[883.5] 1300 (31) JJ (mHz)–0.243 (1)[–0.243] 0.208 (8) JK (mHz)10.58 (8)[10.58] KK (mHz)254 (1)[254] 1321 (34) EE (MHz) 305924.7 (1) (cm –1 ) 10.204550 (3) GcGc (MHz) [1381] GcJGcJ (MHz) 0.00662 (1) GcKGcK (MHz) –0.502 (1) F ab (MHz) –7.197 (4) F ab K (MHz) –0.00275 (2) W±W± (MHz) 1.19453 (5) G c KK (MHz) 0.000077 (2) fit (kHz)32 5832 New laboratory measurements Precise spectroscopic constants Search for cis-methyl vinyl ether in the ISM
32
Acknowledgements …and all the members of the CSD 2009-00038 Molecular Astrophysics Grant VA070A08 Grants CTQ 2010- 19008, AYA 2009-07304 and AYA 2012-32032
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.