Download presentation
Presentation is loading. Please wait.
Published byAmelia Waters Modified over 9 years ago
1
CIPANP Richard Kass 1 Searches for new physics in B decays at BaBar Outline of Talk Searches for: B 0 invisible ( γ ) Charged Lepton Flavor Violation Measurement of B D (*) τ ν Richard Kass for the BaBar Collaboration
2
CIPANP Richard Kass 2 Search for B invisible ( ) A. Dedes, H. Dreiner, and P. Richardson, Phys. Rev.D65, 015001 (2001) Search for B decays with neutrinos or other non-interacting (e.g. SUSY) particles in the final state. In SM B v v is highly suppressed by ~(m v /m b ) 2 In SM BF(B v v γ ) is ~10 -9 In SUSY models BF(B invisible) can be enhanced to ~(0.1-1)x10 -6 due to neutrino + neutralino production Previous Babar results with 88.5 fb -1 ( B. Aubert et al., Phys.Rev.Lett.93:091802,2004 ): BF(B invisible)<22x10 -5, BF(B v v γ ) <4.7x10 -5
3
CIPANP Richard Kass 3 B invisible ( γ ) analysis details Use BaBar data sample: 471x10 6 B B pairs taken at (4S) Divide the event into a signal B and a tag B Use B 0 D (*)- l + v as the tag B. l=electron/muon Semi-leptonic B tag has higher efficiency than fully reconstructed B tag B 0 → D - lν D - → K + π - π - /K S π - B 0 → D *- lν D *- → D 0 π - /D - π 0 D 0 → K - π + /K - π + π 0 /K - π + π + π - Use cosine between B & D(*)l assuming only 1 v is missing common vertex for D (*) l system Signal side of the event: no charged tracks, require photon with E CM >1.2 GeV for B invisible γ Use Neural Net to discriminate signal from background (B’s, q q, etc) B → Invisible D tag : 9 variables D* tag : 6 variables B → Inv.+γ D tag : 6 variables D* tag : 4 variables BaBar Preliminary
4
CIPANP Richard Kass 4 B invisible ( γ ) analysis details Extract event yields using unbinned Max. Likelihood fit Discriminating variable is the extra energy in the EM calorimeter, E extra For B → invisible+ γ the high energy γ is removed from E extra. Signal region has E extra <1.2 GeV Signal efficiencies: B 0 invisible =17.8x10 -4, B 0 invisible+ γ = 16.0x10 -4 Signal and background yields determined from ML fit Preliminary B 0 invisible B 0 invisible+ γ
5
CIPANP Richard Kass 5 B inv (γ) systematic errors & results Bayesian approach used to calculate 90% CL upper limits Use “unphysical” B + inv ( γ ) as a control sample to check the analysis P(B) assumes flat priors, systematics modeled as gaussians BR(B 0 invisible) <2.4x10 -5 BR(B 0 invisible + γ ) <1.7x10 -5
6
CIPANP Richard Kass 6 Search for Charged Lepton Flavor Violation in B decay Look for charged B decays B ± h ± τl with h=π/K and l=e/μ LFV highly suppressed in SM ~ (m v /m W ) 2 Possible to greatly enhance the rate in extensions to SM 2 nd & 3 rd generations favored if coupling ~ mass φ s is a scalar Sher & Yuan, Phys.Rev.D44:1461-1472,1991 consider φ s and estimate: B ± h ± τe < 3x10 -3 B ± h ± τ μ < 3x10 -4 BaBar: B ± K ± τ μ < 7.7x10 -5 @90% CL, PRL 99, 201801 (2007) NP SM+v mixing submitted to PRD arXiv:1204.2852v1
7
CIPANP Richard Kass 7 B ± h ± τ l Analysis Details Use BaBar data sample: 472x10 6 B B pairs taken at Y (4S) Divide the event into a signal B and a tag B Tag B reconstructed using hadronic decays B ± D (*)0 X - X - =combination of s & Ks Signal B reconstructed from B ± h ± l charged tracks h ± = π ± or K ±, l=e or indirectly reconstruct the tau (use 1-prong taus: e n ): p =- p tag - p h - p l E = E beam – E h - E l m 2 = E 2 - | p | 2 |m -m PDG |<60 MeV/c 2 Use B D (*)0 lv, D 0 Kπ as a control sample for BF normalization N Dlv /N D*lv /N D**lv determined from ML fit to data B D (*)0 μv D0D0 D* 0 D** 0 BaBar Preliminary
8
CIPANP Richard Kass 8 B ± h ± τ l Analysis Details Extract event yields using an unbinned Max. Likelihood fit Use poisson PDFs for the three tau channels ( e n ) Assume uniform 3-body phase space for the signal decays Set 90% UL CL using Feldman-Cousins procedure Reject continuum ( e + e - q q ) background using a likelihood ratio Variables include: cos thrust neutral energy in calorimeter muon quality (primary, tau daughter) BaBar Preliminary
9
CIPANP Richard Kass 9 B ± h ± τ l Results Look at 8 channels, NO signals, Only ULs Combine modes assuming B(B + h + τl )= B(B - h - τl ) 5X better model independent bounds on NP scale in μτ flavor changing operators. Λ bd >11 TeV, Λ bs >15 TeV D. Black, et al, PRD 66, 053002 (2002) BaBar Preliminary more details in “extra slides”
10
CIPANP Richard Kass 10 B D (*) τν Large mass of tau adds sensitivity to additional helicity amplitude. For B D (*) τν we have: -- D (*) H-,W-H-,W- We can compare our rate measurements with the SM predictions for: These ratios are sensitive to physics beyond the SM arXiv:1205.5442 submitted to PRL S. Fajfer, J. F. Kamenik, I. Nisandzic, arXiv:1203.2654,, J. F. Kamenik, F. Mescia, PRD 78 014003 (2008)
11
CIPANP Richard Kass 11 Analysis Details Use BaBar data sample: 471x10 6 B B pairs taken at Y (4S) Divide the event into a signal B and a tag B Fully reconstructed tag B using hadronic decays Signal B reconstructed from a lepton ( e ) & D (*) No additional charged particles allowed in event Require q 2 =(p B -p D(*) ) 2 > 4 GeV 2 Backgrounds are suppressed using Boosted Decision Trees Extract event yields using an unbinned 2-D Max. Likelihood fit Perform fit using lepton momentum in B rest frame (p l * ) & (missing mass) 2 mm 2 =(p e+e- -p tag -p D(*) -p l ) 2 Signal Samples: D 0 l, D *0 l, D + l, D *+ l with l= e or Fixed backgrounds: B 0 -B + cross feed, combinatorial, continuum Use data control samples for corrections & validation: B D ** lν, D (*) lν control samples BaBar Preliminary
12
CIPANP Richard Kass 12 B D * τ ν Yields D*0D*0 Events/25 MeV Events/100 MeV m 2 miss (GeV 2 ) p l * (GeV) D*+D*+ D*0D*0 D*+D*+ Events/100 MeV Free yields Fixed yield BaBar Preliminary D *0 D *+ D*D* N sig 693±62245±27888±63 Stat. sig. ( ) 11.311.616.4 R(D * )0.322±0.0320.355±0.0390.332±0.024 B( B D * τν ) % 1.71±0.171.74±0.191.76±0.13 statistical errors only fit assumes R(D *0 )=R(D *+ )
13
CIPANP Richard Kass 13 B D τ ν Yields Free yields Fixed yield D0D0 Events/25 MeV Events/100 MeV M 2 miss (GeV 2 ) p l * (GeV) D+D+ D0D0 D+D+ BaBar Preliminary D0D0 D+D+ DD N sig 314±60177±31489±63 Stat. sig. ( ) 5.56.18.4 R(D)0.429±0.0820.469±0.0840.440±0.058 B( B Dτν ) % 0.99±0.191.01±0.181.02±0.13 statistical errors only fit assumes R(D 0 )=R(D + )
14
CIPANP Richard Kass 14 Systematic Errors & Results R(D)=0.440±0.058±0.042 R(D * )=0.332±0.024±0.018 SM Average does not include this measurement =correlation coeff. SourceR(D) %R(D * ) % D ** lv bkg5.83.7 0.62 MC statistics5.02.5-0.48 Cont. & B B bkg 4.92.7-0.30 sig / norm 2.61.6 0.22 System. Uncert.9.55.3 0.05 Statist. Uncert.13.17.1-0.45 Total Uncertainty16.29.0-0.27
15
CIPANP Richard Kass 15 Comparison with SM R(D)R(D*) BABAR0.440 +/- 0.0710.332 +/- 0.029 SM0.293 +/- 0.0170.252 +/- 0.003 2.0 2.7 The combination of the two measurements (-0.27 correlation) yields 2 =14.6 for 2 DOF and p-value = 6.9x10 -4 Data differ from SM rate by 3.4
16
CIPANP Richard Kass 16 Charged Higgs? Compare our R(D) & R(D*) measurements with Type II 2HDM red=theory ±1 blue=exp ± 1 PDF shapes and efficiencies are recalculated vs tan /m H Data match the 2HDM model for: R(D): tan /m H =0.44 ±0.02 & R(D*): tan /m H =0.75 ±0.04 Exclude Type II 2HDM at 99.8% CL SM:tan /m H =0
17
CIPANP Richard Kass 17 Summary & Conclusions *Search for B 0 invisible ( γ ): improved upper limits: BR(B 0 invisible) <2.4x10 -5 BR(B 0 invisible + γ) <1.7x10 -5 *Search for Charged Lepton Flavor Violation in B decay *Measurement of B D (*) τ ν: Larger than SM predictions BR(B + K + τμ) <4.8x10 -5 BR(B + K + τe) <3.0x10 -5 BR(B + π + τμ) <7.2x10 -5 BR(B + π + τe) <7.5x10 -5 new improved R(D)R(D*) BABAR0.440 +/- 0.0710.332 +/- 0.029 SM0.293 +/- 0.0170.252 +/- 0.003 2.0 2.7 Exclude Type II 2HDM at 99.8% CL submitted to PRL arXiv:1205.5442 submitted to PRD arXiv:1204.2852v1
18
CIPANP Richard Kass 18 Extra slides
19
CIPANP Richard Kass 19 B ± h ± τl Analysis Details Use BaBar data sample: 472x10 6 B B pairs taken at Y(4S) Divide the event into a signal B and a tag B The tag B is fully reconstructed using hadronic decays B ± D (*)0 X - with X - =n 1 π, n 2 K, n 3 Ks, n 4 π 0, n 1 +n 2 ≤ 5, n 3 ≤2, n 4 ≤2 The signal B is reconstructed from B ± h ± l charged tracks h= π or K l=e or indirectly reconstruct the tau (use 1-prong taus: e n ): p =- p tag - p h - p l E = E beam – E h - E l m 2 = E 2 - | p | 2 |m -m PDG |<60 MeV/c 2 Use B D (*)0 lv, D 0 Kπ as a control sample for BF normalization N Dlv /N D*lv /N D**lv determined from ML fit to data B D (*)0 μv D0D0 D* 0 D** 0 ≈1 BaBar Preliminary
20
CIPANP Richard Kass 20 B ± h ± τl Results submitted to PRD arXiv:1204.2852v1
21
CIPANP Richard Kass 21 B D (*) τ ν Yields arXiv:1205.5442
22
CIPANP Richard Kass 22 PEP-II at SLAC asymmetric e + e − collider: 9 GeV (e - )/3.1 GeV (e + ) PEP-II Peak Luminosity 1.2 x 10 34 cm -2 s -1 BaBar recorded 429 fb -1 at Y (4S) asymmetric e + e − collider: 9 GeV (e - )/3.1 GeV (e + ) PEP-II Peak Luminosity 1.2 x 10 34 cm -2 s -1 BaBar recorded 429 fb -1 at Y (4S) 4.7 x 10 8 (4S)→B B events
23
CIPANP Richard Kass 23 1.5 T Solenoid Electromagnetic Calorimeter (EMC) Detector of Internally Recflected Cherenkov Light (DIRC) Instrumented Flux Return (IFR) Silicon Vertex Tracker (SVT) Drift Chamber (DCH) e - (9 GeV) e + (3.1 GeV) BaBar Detector SVT, DCH: charged particle tracking: vertex & mom. resolution, K 0 s /Λ EMC: electromagnetic calorimeter: /e/π 0 /η DIRC, IFR, DCH: charged particle ID: π/μ/K/p Highly efficient trigger for B mesons
24
CIPANP Richard Kass 24 Threshold kinematics: we know the initial energy (E* beam ) of the Y(4S) system Therefore we know the energy & magnitude of momentum of each B meson Background (spherical) (jet-structure) Signal Analysis Technique Also, use neural networks + unbinned maximum likelihood fits Event topology
25
CIPANP Richard Kass 25 BaBar DIRC BaBar K/ ID D * + → D 0 + D 0 → K + -
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.