Download presentation
Presentation is loading. Please wait.
Published byJulianna Nichols Modified over 9 years ago
1
Short term variability of the ozone and other species simulated using LYRA data Tatiana Egorova *, Eugene Rozanov *,**, Werner Schmutz * Ingolf Dammash *** * PMOD/WRC, Davos, Switzerland ** ETHZ, Zurich, Switzerland *** ROB, Brussels, Belgium
2
LYRA on PROBA2 (ROB & PMOD/WRC) PREMOS on PICARD (PMOD/WRC) LYRA on PROBA2 (ROB & PMOD/WRC) PREMOS on PICARD (PMOD/WRC) Chemistry ionosphere climate model (CICM) extension of CCM SOCOL (Egorova, JASTP, 2010) Chemistry ionosphere climate model (CICM) extension of CCM SOCOL (Egorova, JASTP, 2010) On-line LYRA and PREMOS data for space-weather community On-line LYRA and PREMOS data for space-weather community Project idea Evaluate the response of the middle atmosphere to the short term solar UV irradiance variability Evaluate the response of the middle atmosphere to the short term solar UV irradiance variability
3
Goals Find out how well we understand the solar influence on the middle atmosphere; Learn how to manage near-real-time operation; Space Weather Service is secondary goal but may become interesting if successful ! Preparatrion to the model extention to upper atmosphere
4
Nowcasting of neutral and ion composition in the mesosphere based on solar irradiance measurements Hourly/Daily Data from observations by LYRA, PREMOS, SORCE Hourly/Daily Data from observations by LYRA, PREMOS, SORCE Radiation spectrum reconstruction 120-680 nm Radiation spectrum reconstruction 120-680 nm Nowcast of anomalies of neutral and charged species with CICM SOCOL i Nowcast of anomalies of neutral and charged species with CICM SOCOL i Nowcast results available on web every 6 hours Nowcast results available on web every 6 hours Output validation to improve the model and experimental set-up Output validation to improve the model and experimental set-up
5
Ozone and hydroxyl response to the solar variability January 2004 case study Hydroxyl and ozone in the mesosphere simulated with CCM SOCOL. These components are sensitive to variable solar irradiance because H 2 O + hv (121.5 nm) => OH + HOH goes up O 3 + OH => O2 + HO 2 O 3 decreases
6
Experimental setup (intended) 10-member model ensemble run for the next 6 hours 10-member model ensemble run for the next 6 hours Spectral solar irradiance on model spectral grid for the next 6 hours Spectral solar irradiance on model spectral grid for the next 6 hours Initial fields for 10 ensemble members Initial fields for 10 ensemble members Hourly model output for the next 6 hours Hourly model output for the next 6 hours Initialization fields for the next period Initialization fields for the next period
7
Output data Mixing ratio of the neutral species and electrons, negative and positive ions density for the 6 hour period after the last LYRA measurement and their statistical properties Mixing ratio of the neutral species and electrons, negative and positive ions density for the 6 hour period after the last LYRA measurement and their statistical properties Charged components: O +, O 2 +, O 4 +, N +, NO +, N 2 +, H 2 O 2 +, H 3 O +,O 2 + ∙N 2, O 2 + ∙H 2 O, H 3 O + ∙OH, NO + ∙H 2 O, NO + ∙(H 2 O) 2, NO + ∙(H 2 O) 3, NO + ∙CO 2, NO + ∙N 2, NO + ∙H 2 O∙CO 2, NO + ∙H 2 O∙N 2, NO + ∙(H 2 O) 2 ∙CO 2, NO + ∙(H 2 O) 2 ∙N 2, H + ∙(H 2 O) 2, H + ∙(H 2 O) 3, H + ∙(H 2 O) 4, H + ∙(H 2 O) 5, H + ∙(H 2 O) 6, H + ∙(H 2 O) 7, H 3 O + ∙CO 2, H 3 O + ∙N 2, H + ∙(H 2 O) 2 ∙CO 2, H + ∙(H 2 O) 2 ∙N 2 e¯,O¯, O 2 ¯, O 3 ¯, O 4 ¯, OH¯, CO 3 ¯, CO 4 ¯, NO 2 ¯, NO 3 ¯, HCO 3 ¯, ClO¯, Cl¯, CH 3 ¯,O 2 ¯∙H 2 O, NO 3 ¯∙H 2 O, CO 3 ¯∙H 2 O Neutral components: O 3, O *, O, O 2 *, NO, HO 2, ClO, NO 2, OH, NO 3, N 2 O 5, HNO 3,HONO 3, ClONO 2, Cl, N, N *, H 2 O 2, H, HOCl, Cl 2, Cl 2 O 2, HCl, Br, CH 2 O, BrO, HBr, HOBr, BrNO 3, BrCl, CH 3, CH 3 O 2, CH 3 O, HCO, CH 3 O 2 H, H 2 O, CFC-11, CFC-12, N 2 O, CH 4, CO, H 2, CBrF 3 Charged components: O +, O 2 +, O 4 +, N +, NO +, N 2 +, H 2 O 2 +, H 3 O +,O 2 + ∙N 2, O 2 + ∙H 2 O, H 3 O + ∙OH, NO + ∙H 2 O, NO + ∙(H 2 O) 2, NO + ∙(H 2 O) 3, NO + ∙CO 2, NO + ∙N 2, NO + ∙H 2 O∙CO 2, NO + ∙H 2 O∙N 2, NO + ∙(H 2 O) 2 ∙CO 2, NO + ∙(H 2 O) 2 ∙N 2, H + ∙(H 2 O) 2, H + ∙(H 2 O) 3, H + ∙(H 2 O) 4, H + ∙(H 2 O) 5, H + ∙(H 2 O) 6, H + ∙(H 2 O) 7, H 3 O + ∙CO 2, H 3 O + ∙N 2, H + ∙(H 2 O) 2 ∙CO 2, H + ∙(H 2 O) 2 ∙N 2 e¯,O¯, O 2 ¯, O 3 ¯, O 4 ¯, OH¯, CO 3 ¯, CO 4 ¯, NO 2 ¯, NO 3 ¯, HCO 3 ¯, ClO¯, Cl¯, CH 3 ¯,O 2 ¯∙H 2 O, NO 3 ¯∙H 2 O, CO 3 ¯∙H 2 O Neutral components: O 3, O *, O, O 2 *, NO, HO 2, ClO, NO 2, OH, NO 3, N 2 O 5, HNO 3,HONO 3, ClONO 2, Cl, N, N *, H 2 O 2, H, HOCl, Cl 2, Cl 2 O 2, HCl, Br, CH 2 O, BrO, HBr, HOBr, BrNO 3, BrCl, CH 3, CH 3 O 2, CH 3 O, HCO, CH 3 O 2 H, H 2 O, CFC-11, CFC-12, N 2 O, CH 4, CO, H 2, CBrF 3 4D: latitude, longitude, altitude, time 4D: latitude, longitude, altitude, time
8
Data form LYRA half calibrated (provided by Ingolf Dammash)
9
Gap filled LYRA data Lyra R=0.75 Sorce/Solstice, 2008 R=0.58
10
Gap filled LYRA data
11
Solar spectrum reconstruction We have reconstructed solar UV irradiance for 120-680 nm required by the model from LYRA data applying linear regression analysis. We use the following formula for the reconstruction: F i = A + B P i F is solar spectral UV irradiance; is wavelength; i is day number; A and B correlation coefficients calculated SOLSTICE/SORCE and SIM/SORCE for 2008; P is solar irradiance from LYRA (Channel 2). See Egorova et al. (ACP, 2008) for details and accuracy estimation
13
Problems for Hartley-Higgins bands
14
Experimental set-up Composite 1: 121-220 nm SOLSTICE/SORCE 220-700 nm SIM/SORCE Composite 2: 121-280 nm SOLSTICE/SORCE 280-700 nm SIM/SORCE
15
Simulation with 1D model: O 3 at 80km H 2 O + hv (121.5 nm) => OH + H O 3 + OH => O2 + HO 2 O 3 and OH in antiphase
16
Simulation with 1D model: OH at 80km H 2 O + hv (121.5 nm) => OH + H O 3 + OH => O2 + HO 2 O 3 and OH in antiphase
17
Simulation with 1D model: electrons at 80km NO + hv => NO + + e - O 3 and electrons in phase
18
Data sampling (daily vis. hourly) Blue- daily Red – hourly
19
Simulation with 1D model: O 3 at 60km O 2 + hv => O + O O 2 + O + M => O 3 O 3 + hv => O(1D) + O 2 O(1D) + H 2 O => OH + OH O 3 and OH in phase
20
Simulation with 1D model: OH at 60km O 2 + hv => O + O O 2 + O + M => O 3 O 3 + hv => O(1D) + O 2 O(1D) + H 2 O => OH + OH O 3 and OH in phase
21
Vertical O 3 profile: difference between two composites
22
Electron density in the tropics km Tropical mean time evolution (10-11.2003) of the electron concentration (cm -3 ). Solar UV SPE GCR
23
1.Ozone, hydroxyl, electron and ion densities show some response to the solar irradiance variability 2.Lyra data can be used for nowasting! If available in RT mode 3.Some problems with data and model remain... Conclusions
24
End of talk
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.