Download presentation
Presentation is loading. Please wait.
Published byDamian Lamb Modified over 9 years ago
1
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Sensitivity Analysis of Suspended Sediment Inherent Optical Property Effects on Modeled Water Leaving Radiance Jason Hamel Dr. Rolando Raqueño Dr. John Schott Dr. Minsu Kim
2
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion
3
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Objective Examine the effect of suspended solids on water leaving radianceExamine the effect of suspended solids on water leaving radiance –Perform a sensitivity study using a model to determine effect of: »Composition »Particle size »Concentration –Analyze the NIR region to determine cases where normal atmospheric correction methods over water will fail Tools:Tools: –OOPS –Hydrolight
4
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Signal Sources Air/Water Transition Water/Air Transition In Water Atmosphere to Sensor 10% 80% 10%
5
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Characteristics of Spectral data Irondequoit Bay Lake Ontario Genesee River
6
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion
7
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Water Modeling Hydrolight is our current water modeling toolHydrolight is our current water modeling tool To model the radiance leaving the water surface Hydrolight needs defined:To model the radiance leaving the water surface Hydrolight needs defined: –Illumination –Surface wind speed –Water quality parameters –Bottom conditions
8
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Water Modeling Water quality parametersWater quality parameters –Material components in the water column (typically included is pure water, chlorophyll, suspended solids, and color dissolved organic matter) »Concentration »Absorption coefficient »Scattering coefficient »Scattering phase function –All variables can be defined for wavelength and depth
9
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Water Modeling Ocean Optical Plankton Simulator (OOPS) developed at CornellOcean Optical Plankton Simulator (OOPS) developed at Cornell Models absorption and scattering coefficients and the scattering phase functionModels absorption and scattering coefficients and the scattering phase function Generate IOP’s of in-water constituents if basic properties of the materials are knownGenerate IOP’s of in-water constituents if basic properties of the materials are known Can generate test data sets with Hydrolight to analyze how specific constituents effect the water leaving radianceCan generate test data sets with Hydrolight to analyze how specific constituents effect the water leaving radiance
10
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion
11
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Suspended Solids in OOPS Basic physical and optical properties needed by OOPS to model IOP’s:Basic physical and optical properties needed by OOPS to model IOP’s: –Suspended solids composition –Refractive index –Particle size distribution –Density
12
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Suspended Solids Composition QuartzSiO 2QuartzSiO 2 FeldsparsFeldspars –OrthoclaseKAlSi 3 O 8 –AlbiteNaAlSi 3 O 8 –AnorthiteCaAl 2 Si 2 O 8 Clay mineralsClay minerals –KaoliniteAl 4 (OH) 8 [Si 4 O 10 ] –Chlorite(Al, Mg, Fe) 3 (OH) 2 [(Al,Si} 4 O 10 ] Mg 3 (OH) –Illite(K, H 2 O) Al 2 (H 2 O, OH) 2 [AlSi 3 O 10 ] –Montmorillonite{(AL 2-x Mg x ) (OH) 2 [Si 4 O 10 ]} -x Na x. n H 1 O Calcite/aragoniteCaCO 3Calcite/aragoniteCaCO 3 OpalSiO 2 (amorphous)OpalSiO 2 (amorphous)
13
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Refractive Indices Ordinary RayExtraordinary RayTertiary Ray Quartz1.5441.553Quartz1.5441.553 FeldsparsFeldspars –Orthoclase1.5231.5271.531 –Albite1.5271.5311.538 –Anorthite1.5771.5851.590 ClaysClays –Kaolinite1.5491.5641.565 –Chlorite1.611.621.62 –Illite1.561.591.59 –Montmorillonite1.551.571.57 Calcium CarbonateCalcium Carbonate –Calcite1.4861.658 –Aragonite1.5311.6801.686 Opal1.44Opal1.44 From Lide, D. R. (2003). CRC Handbook of Chemistry and Physics 2003-2004. CRC Press, 84th edition.
14
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Refractive Indices From Gifford, J. W. (1902). The refractive indices of fluorite, quartz, and calcite. Proceedings of the Royal Society of London, 70:329-340.
15
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Particle Size Distributions Will test 3 particle size distributions (PSD):Will test 3 particle size distributions (PSD): –Junge –Gaussian –Log-Normal
16
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Typical Ocean PSD’s From Simpson, W. R. (1982). Particulate matter in the oceans-sampling methods, concentration, size distribution, and particle dynamics. Oceanography and Marine Biology, 20:119-172.
17
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Junge PSD’s
18
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T In Situ PSD’s Measurements made using a Benthos plankton cameraMeasurements made using a Benthos plankton camera Found 80% of particulate matter in suspension as flocs larger than 100 m in sizeFound 80% of particulate matter in suspension as flocs larger than 100 m in size From Eisma, D., et al. (1991). Suspended-matter particle size in some West-European estuaries; Part I: Particle-size distribution. Netherlands Journal of Sea Research, 28(3):193-214.
19
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Gaussian PSD’s
20
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Log-Normal PSD’s
21
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion
22
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Hydrolight Analysis Now that some variations of suspended solids are known, Oops can generate various suspend solid IOP’sNow that some variations of suspended solids are known, Oops can generate various suspend solid IOP’s These IOP’s can operate as variables in Hydrolight to test the effect different suspended solids have on the water leaving radianceThese IOP’s can operate as variables in Hydrolight to test the effect different suspended solids have on the water leaving radiance Since the different IOP’s are of main interest, most Hydrolight inputs will be held constant between runsSince the different IOP’s are of main interest, most Hydrolight inputs will be held constant between runs
23
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution
24
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution QuartzAlbiteKaoliniteCalcite Opal
25
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44
26
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal
27
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution OOPS QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal
28
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution OOPS QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal
29
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution OOPS QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal
30
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal
31
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM 0100 0.760.570.57 62.9622.446.12 6.5110.372.14 4.2810.00 2.75 QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal
32
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM 0100 0.760.570.57 62.9622.446.12 6.5110.372.14 4.2810.00 2.75 QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal
33
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM 0100 0.760.570.57 62.9622.446.12 6.5110.372.14 4.2810.00 2.75 QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal
34
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM 0100 0.760.570.57 62.9622.446.12 6.5110.372.14 4.2810.00 2.75 QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal
35
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion
36
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Original Hydrolight IOP
37
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Effect of Composition and PSD
38
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Lake Ontario Cases
39
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Genesee River Plume Cases
40
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Conesus Lake Cases
41
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Long Pond Cases
42
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Different Minerals, Same PSD and Concentration
43
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Different PSD’s, Same Mineral and Concentration
44
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Different Concentrations, Same Mineral and PSD
45
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T NIR Region 170 observations of a Junge 105 observations of a Log-Normal
46
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom JungesLog-Normals UFI measured Albite Calcite 1.486 Calcite 1.658 Calcite 1.658 spec Kaolinite Opal Quartz
47
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom Albite Calcite 1.486 Calcite 1.658 Calcite 1.658 spec Kaolinite Opal Quartz JungesLog-Normals UFI measured
48
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom Albite Calcite 1.486 Calcite 1.658 Calcite 1.658 spec Kaolinite Opal Quartz JungesLog-Normals UFI measured
49
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom Albite Calcite 1.486 Calcite 1.658 Calcite 1.658 spec Kaolinite Opal Quartz JungesLog-Normals UFI measured
50
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom Albite Calcite 1.486 Calcite 1.658 Calcite 1.658 spec Kaolinite Opal Quartz JungesLog-Normals UFI measured
51
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Classification MaxD 20 band classmap K-means max 20 bands classmap 0, 10, 0 0.7, 0.5, 0.5 4, 10, 2 6, 10, 2 62, 22, 6 JL-NUFI JL-NUFI
52
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Concentration Discrimination ENVI N-D Visualizer Classified Pixels 0, 10, 0 0.7, 0.5, 0.5 4, 10, 2 6, 10, 2 62, 22, 6 JL-NUFI
53
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Some PSD and Mineral Discrimination ENVI N-D Visualizer Classified Pixels 0, 10, 0 0.7, 0.5, 0.5 4, 10, 2 6, 10, 2 62, 22, 6 JL-NUFI
54
Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Conclusions OOPS and Hydrolight model the water-leaving radiance from water bodies given physical and optical properties of constituentsOOPS and Hydrolight model the water-leaving radiance from water bodies given physical and optical properties of constituents A database of reflectance curves representative of some case 2 water bodies has been generatedA database of reflectance curves representative of some case 2 water bodies has been generated Initial results are following expectationsInitial results are following expectations –Mineral composition, PSD, and concentration all have an effect on the water surface reflectance –Situations exist for Log-Normal PSD’s between 800-900nm where there is 1-2% surface reflectance that will interfere with normal atmospheric correction attempts
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.