Presentation is loading. Please wait.

Presentation is loading. Please wait.

Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Sensitivity Analysis of Suspended Sediment Inherent Optical Property.

Similar presentations


Presentation on theme: "Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Sensitivity Analysis of Suspended Sediment Inherent Optical Property."— Presentation transcript:

1 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Sensitivity Analysis of Suspended Sediment Inherent Optical Property Effects on Modeled Water Leaving Radiance Jason Hamel Dr. Rolando Raqueño Dr. John Schott Dr. Minsu Kim

2 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion

3 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Objective Examine the effect of suspended solids on water leaving radianceExamine the effect of suspended solids on water leaving radiance –Perform a sensitivity study using a model to determine effect of: »Composition »Particle size »Concentration –Analyze the NIR region to determine cases where normal atmospheric correction methods over water will fail Tools:Tools: –OOPS –Hydrolight

4 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Signal Sources Air/Water Transition Water/Air Transition In Water Atmosphere to Sensor 10% 80% 10%

5 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Characteristics of Spectral data Irondequoit Bay Lake Ontario Genesee River

6 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion

7 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Water Modeling Hydrolight is our current water modeling toolHydrolight is our current water modeling tool To model the radiance leaving the water surface Hydrolight needs defined:To model the radiance leaving the water surface Hydrolight needs defined: –Illumination –Surface wind speed –Water quality parameters –Bottom conditions

8 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Water Modeling Water quality parametersWater quality parameters –Material components in the water column (typically included is pure water, chlorophyll, suspended solids, and color dissolved organic matter) »Concentration »Absorption coefficient »Scattering coefficient »Scattering phase function –All variables can be defined for wavelength and depth

9 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Water Modeling Ocean Optical Plankton Simulator (OOPS) developed at CornellOcean Optical Plankton Simulator (OOPS) developed at Cornell Models absorption and scattering coefficients and the scattering phase functionModels absorption and scattering coefficients and the scattering phase function Generate IOP’s of in-water constituents if basic properties of the materials are knownGenerate IOP’s of in-water constituents if basic properties of the materials are known Can generate test data sets with Hydrolight to analyze how specific constituents effect the water leaving radianceCan generate test data sets with Hydrolight to analyze how specific constituents effect the water leaving radiance

10 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion

11 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Suspended Solids in OOPS Basic physical and optical properties needed by OOPS to model IOP’s:Basic physical and optical properties needed by OOPS to model IOP’s: –Suspended solids composition –Refractive index –Particle size distribution –Density

12 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Suspended Solids Composition QuartzSiO 2QuartzSiO 2 FeldsparsFeldspars –OrthoclaseKAlSi 3 O 8 –AlbiteNaAlSi 3 O 8 –AnorthiteCaAl 2 Si 2 O 8 Clay mineralsClay minerals –KaoliniteAl 4 (OH) 8 [Si 4 O 10 ] –Chlorite(Al, Mg, Fe) 3 (OH) 2 [(Al,Si} 4 O 10 ] Mg 3 (OH) –Illite(K, H 2 O) Al 2 (H 2 O, OH) 2 [AlSi 3 O 10 ] –Montmorillonite{(AL 2-x Mg x ) (OH) 2 [Si 4 O 10 ]} -x Na x. n H 1 O Calcite/aragoniteCaCO 3Calcite/aragoniteCaCO 3 OpalSiO 2 (amorphous)OpalSiO 2 (amorphous)

13 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Refractive Indices Ordinary RayExtraordinary RayTertiary Ray Quartz1.5441.553Quartz1.5441.553 FeldsparsFeldspars –Orthoclase1.5231.5271.531 –Albite1.5271.5311.538 –Anorthite1.5771.5851.590 ClaysClays –Kaolinite1.5491.5641.565 –Chlorite1.611.621.62 –Illite1.561.591.59 –Montmorillonite1.551.571.57 Calcium CarbonateCalcium Carbonate –Calcite1.4861.658 –Aragonite1.5311.6801.686 Opal1.44Opal1.44 From Lide, D. R. (2003). CRC Handbook of Chemistry and Physics 2003-2004. CRC Press, 84th edition.

14 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Refractive Indices From Gifford, J. W. (1902). The refractive indices of fluorite, quartz, and calcite. Proceedings of the Royal Society of London, 70:329-340.

15 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Particle Size Distributions Will test 3 particle size distributions (PSD):Will test 3 particle size distributions (PSD): –Junge –Gaussian –Log-Normal

16 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Typical Ocean PSD’s From Simpson, W. R. (1982). Particulate matter in the oceans-sampling methods, concentration, size distribution, and particle dynamics. Oceanography and Marine Biology, 20:119-172.

17 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Junge PSD’s

18 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T In Situ PSD’s Measurements made using a Benthos plankton cameraMeasurements made using a Benthos plankton camera Found 80% of particulate matter in suspension as flocs larger than 100  m in sizeFound 80% of particulate matter in suspension as flocs larger than 100  m in size From Eisma, D., et al. (1991). Suspended-matter particle size in some West-European estuaries; Part I: Particle-size distribution. Netherlands Journal of Sea Research, 28(3):193-214.

19 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Gaussian PSD’s

20 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Log-Normal PSD’s

21 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion

22 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Hydrolight Analysis Now that some variations of suspended solids are known, Oops can generate various suspend solid IOP’sNow that some variations of suspended solids are known, Oops can generate various suspend solid IOP’s These IOP’s can operate as variables in Hydrolight to test the effect different suspended solids have on the water leaving radianceThese IOP’s can operate as variables in Hydrolight to test the effect different suspended solids have on the water leaving radiance Since the different IOP’s are of main interest, most Hydrolight inputs will be held constant between runsSince the different IOP’s are of main interest, most Hydrolight inputs will be held constant between runs

23 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution

24 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution QuartzAlbiteKaoliniteCalcite Opal

25 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44

26 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal

27 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution OOPS QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal

28 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution OOPS QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal

29 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Composition Refractive index Particle size distribution OOPS QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal

30 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal

31 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM 0100 0.760.570.57 62.9622.446.12 6.5110.372.14 4.2810.00 2.75 QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal

32 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM 0100 0.760.570.57 62.9622.446.12 6.5110.372.14 4.2810.00 2.75 QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal

33 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM 0100 0.760.570.57 62.9622.446.12 6.5110.372.14 4.2810.00 2.75 QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal

34 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Process Summary Concentration Composition Refractive index Particle size distribution OOPS CHL TSSCDOM CHL TSSCDOM 0100 0.760.570.57 62.9622.446.12 6.5110.372.14 4.2810.00 2.75 QuartzAlbiteKaoliniteCalcite Opal 1.5441.527 1.549 1.486/1.658/Spectral 1.44 14 Junge2 Gaussian7 Log-Normal

35 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Outline ObjectiveObjective Water ModelingWater Modeling Suspended SolidsSuspended Solids Test CasesTest Cases ResultsResults ConclusionConclusion

36 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Original Hydrolight IOP

37 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Effect of Composition and PSD

38 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Lake Ontario Cases

39 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Genesee River Plume Cases

40 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Conesus Lake Cases

41 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Long Pond Cases

42 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Different Minerals, Same PSD and Concentration

43 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Different PSD’s, Same Mineral and Concentration

44 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Different Concentrations, Same Mineral and PSD

45 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T NIR Region 170 observations of a Junge 105 observations of a Log-Normal

46 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom JungesLog-Normals UFI measured Albite Calcite 1.486 Calcite 1.658 Calcite 1.658 spec Kaolinite Opal Quartz

47 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom Albite Calcite 1.486 Calcite 1.658 Calcite 1.658 spec Kaolinite Opal Quartz JungesLog-Normals UFI measured

48 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom Albite Calcite 1.486 Calcite 1.658 Calcite 1.658 spec Kaolinite Opal Quartz JungesLog-Normals UFI measured

49 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom Albite Calcite 1.486 Calcite 1.658 Calcite 1.658 spec Kaolinite Opal Quartz JungesLog-Normals UFI measured

50 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Data Cube for Analysis 0chl, 10tss, 0cdom 0.7chl, 0.5tss, 0.5tss 4chl, 10tss, 2cdom 6chl, 10tss, 2cdom 62chl, 22tss, 6cdom Albite Calcite 1.486 Calcite 1.658 Calcite 1.658 spec Kaolinite Opal Quartz JungesLog-Normals UFI measured

51 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Classification MaxD 20 band classmap K-means max 20 bands classmap 0, 10, 0 0.7, 0.5, 0.5 4, 10, 2 6, 10, 2 62, 22, 6 JL-NUFI JL-NUFI

52 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Concentration Discrimination ENVI N-D Visualizer Classified Pixels 0, 10, 0 0.7, 0.5, 0.5 4, 10, 2 6, 10, 2 62, 22, 6 JL-NUFI

53 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Some PSD and Mineral Discrimination ENVI N-D Visualizer Classified Pixels 0, 10, 0 0.7, 0.5, 0.5 4, 10, 2 6, 10, 2 62, 22, 6 JL-NUFI

54 Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Conclusions OOPS and Hydrolight model the water-leaving radiance from water bodies given physical and optical properties of constituentsOOPS and Hydrolight model the water-leaving radiance from water bodies given physical and optical properties of constituents A database of reflectance curves representative of some case 2 water bodies has been generatedA database of reflectance curves representative of some case 2 water bodies has been generated Initial results are following expectationsInitial results are following expectations –Mineral composition, PSD, and concentration all have an effect on the water surface reflectance –Situations exist for Log-Normal PSD’s between 800-900nm where there is 1-2% surface reflectance that will interfere with normal atmospheric correction attempts


Download ppt "Digital Imaging and Remote Sensing Laboratory R.I.TR.I.TR.I.TR.I.T R.I.TR.I.TR.I.TR.I.T Sensitivity Analysis of Suspended Sediment Inherent Optical Property."

Similar presentations


Ads by Google