Download presentation
Presentation is loading. Please wait.
Published bySamuel Hudson Modified over 9 years ago
1
Discrete Optimization (離散最適化) Linear Programming (線形計画) Nonlinear Programming (非線形計画) Network optimization (ネットワーク計画) Mathematical Programming (数理計画)
2
Discrete Optimization (離散最適化) Combinatorial Optimization (組合せ最適化) Integer Programming (整数計画) Linear Programming Graph Theory (グラフ理論) Algorithm and Date Structure Discrete Mathematics Related Topics ( 関連分野 ) c.f. P1
3
Schedule 1.What is a graph? (グラフ基礎) 2.Shortest Path Problem (最短路問題) 3.Assignment Problem (割当問題) 4.Routing Problem (経路問題)
4
Graph (グラフ) - ?
5
Graph (グラフ) -examples
6
Graph -definition V : vertex set (頂点集合) A ⊆ V×V: arc set (枝集合) G=(V, A) discrete structure (離散構造) vertex (頂点) arc (枝)
7
Graph - sets vs illustration a b c d e f g h i j k V={a,b,c,d,e,f,g,h,i,j,k} A={{a,b},{a,c},{a,e},{a,g},{b,c},{b,e},{b,f}, {c,d},{d,f},{d,g},{e,h},{e,k},{f,h},{f,j}, {g,j},{g,k},{h,i},{h,j},{i,j},{i,k},{j,k}} a b c d e f g h i j k
8
Graph -examples undirected graph (無向グラフ) directed graph / digraph (有向グラフ)
9
Graph - digraph V : vertex set (頂点集合) A : arc set (枝集合) ordered pairs of V G=(V, A) vertex (頂点) arc (枝)
10
Digraph - sets vs illustration a b c d e V={a, b, c, d, e} A={(a, b), (a, d), (b, c), (b, e), (c, a), (c, e), (d, c), (c, e), (e, d)}
11
Graph - incidence a b c d e a b c d e f g h i j k a と b は隣接 (adjacent) 枝 {a, b} は a に接続 (incident) a と b は枝 {a, b} の端点 (end point) a は枝 (a, b) の始点 (tail) b は枝 (a, b) の終点 (head) 並列枝 (parallel)
12
2.1 基本的用語 グラフの言葉を覚えよう
13
Walk,trail,path (a, c, f, h, j, i, k) (a,b, f, h, j, f, h, i, k) (a, g, j, h, i, j, k) (a, c, d, f, h, j, i, k) walk trail path walk = 路 trail = 単純路 path = 道/初等的路 a b c d e f g h i j k a b c d e f g h i j k 始点 終点 length=7
14
Closed walk,closed trail, cycle (a, c, f, h, j, i, k,e,a) (a,b, f, h, j, f, h, i, k,e,a) (a, g, j, h, i, j, k,e,a) (a, c, d, f, h, j, i, k,e,a) c.walk c.trail cycle walk = 路 trail = 単純路 path = 道/初等的路 a b c d e f g h i j k
15
Walk, trail, path - in digraph (a,b,c,d,e) (a,d,c,e) (d,e,d) path directed path a b c d e a b c d e forward backward
16
Subgraph (部分グラフ) G=(V, A) V’ ⊆ V a b c d e f g h i j k a b c d h j k a b c d e f g h i j k G|V’ induced subgraph on V’ (V’ が誘導する部分グラフ ) subgraph a b c d h j k
17
Subgraph (部分グラフ) G=(V, A) a b c d e f g h i j k spanning subgraph (全域部分グラフ)
18
Subgraph (部分グラフ) G=(V, A) T⊆VT⊆V a b c d e f g h i j k a b c d e f g h i j k G\T
19
Connectivity (連結性) not connected (非連結) connected (連結) connected component (連結成分) isolated vertex (孤立点)
20
Connectivity - in digraph strongly connected (強連結) root (根) strongly connected component (強連結成分)
21
Degree (次 数) 4 4 4 3 3 3 3 4 4 4 4
22
Tree (木) leaves (葉) root directed tree (有向木) forest spanning tree
23
Acyclic (非閉路) in digraph not contain a directed cycle
24
Network (ネットワーク) Graph + numerical data capacity, cost, supply/demand…
25
2.2 基本性質 グラフに慣れよう Fundamental Properties
26
Lemma2.1 In any graph, the number of vertices of odd degree is even.degree Hand Shaking Lemma 握手補題 どんなグラフでも,奇数次数の頂点は偶数個ある.
27
Lemma2.1(proof) In any graph, the number of vertices of odd degree is even.degree どんなグラフでも,奇数次数の頂点は偶数個ある. Σ (degree of v) = 2 |A| v the number of elements in A ⇒ Σ (degree of v) is even v
28
Lemma2.2 Let G be a graph having n vertices and let any vertex of G have degree at least (n-1)/2. G must be connected.connected n=7 n 頂点のグラフ G において,どの頂点の次数も少なくとも (n-1)/2 であるとき, G は連結である.
29
Lemma2.2(proof) Let G be a graph having n vertices and let any vertex of G have degree at least (n-1)/2. G must be connected. n 頂点のグラフ G において,どの頂点の次数も少なくとも (n-1)/2 であるとき, G は連結である. Assume that G has k connected components G 1, G 2, …, G k., and each component G i has n i vertices. Then, n 1 +n 2 +…+n k =n. For each component G i, any vertices v in G i has degree at most n i -1. Thus we have, (n-1)/2 ≦ n i -1, which implies that n i ≧ (n+1)/2. Hence k=1.
30
Lemma2.3 If G=(V, A) is not connected, the complementary graph G=(V, A) is connected. A= (V × V )\A G G G が非連結のとき,その補グラフは連結である.
31
Lemma2.3(proof) If G=(V, A) is not connected, the complementary graph G=(V, A) is connected. G G G1G1 G2G2 GkGk connected component G1G1 G2G2 GkGk For a pair of vertices in any different components, For a pair of vertices in a same component, There is a path between any pair of vertices
32
Lemma2.4 Let G be a graph without isolated vertices having n vertices and n-1 arcs (where n ≧ 2). G contains at least two vertices of degree 1.isolated vertices n=10 G は孤立点をもたないグラフで, n 個の頂点, n-1 本の枝をもつ とする.ただし, n ≧ 2 .このとき, G は次数 1 の頂点を少なく とも 2 つはもつ. Σ (degree of v) = 2 (n-1) v degreenumber 00 1 ≦1≦1 ≧2≧2≧ n-1 Σ (degree of v) ≧ 2 (n-1) + 1 v
33
Lemma2.5 Any connected graph on n vertices contains at least n-1 arcs. (proof) induction on n v
34
Lemma2.6 Any acyclic graph on n vertices has at most n-1 arcs. a v v’ (proof) induction on n ( a graph containing no cycle)
35
Lemma2.7 (1) G is a tree connected acyclic (2) acyclic adding any arc to G yields a cycle (3) connected there is a unique path between any two vertices (4) connected removing any arc from G becomes unconnected. (5) connected n-1 arcs (n: number of vertices) (6) acyclic n-1 arcs
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.