Download presentation
Presentation is loading. Please wait.
Published byLee Lucas Modified over 9 years ago
1
Investigating Performance Improvements and True Costs of Alternative Fuel Buses in Florida Alexander Kolpakov Research Associate Center for Urban Transportation Research (CUTR) University of South Florida Tampa, FL
2
2 About CUTR University Transportation Center (UTC) Public transportation focus Established in 1988 by Florida legislature Applied research, technical assistance, training, education Multi-disciplinary “Real world” experience (transit agencies, MPO, DOT)
3
3 CUTR Research Program 150+ active research projects $14 million expenditures (FY2014) from contracts and grants to support research, education, training, and technical assistance 45 full-time faculty 25-100 students
4
4 CUTR Alternative Fuel Projects Tracking Performance and Costs of Alternative Fuel Buses in Florida Evaluation of FTA’s Electric Drive Strategic Plan (EDSP) Bus Fuels Fleet Evaluation Tool (BuFFeT) model Advanced Transit Energy Portal (ATEP) (www.AdvancedTransitEnergy.org)www.AdvancedTransitEnergy.org Tampa Bay Clean Cities Coalition (designated by DOE in 2014)
5
5 Background Many agencies introduced AFVs into their fleets To reduce fuel consumption save costs To reduce GHG emissions environmental benefits TIGGER grants and regular transit capital funds help with AFV acquisition FDOT funds 50% of non-federal share of bus capital Many propulsion technologies to choose from AFVs do not always provide desired efficiency gains and advertised cost savings to agencies
6
6 Tracking Costs of AF Buses Project Goals Collect and analyze field data on performance and costs of operating alternative fuel transit vehicles in Florida Research modification requirements for transit maintenance facilities to make them suitable for alternative fuel buses Update BuFFeT model Research Approach Request data from all fixed-route transit agencies in Florida Standard data submission template Quarterly reporting (since 2012)
7
7 Type of Data Collected Vehicle length Power plant Fuel type Date placed/removed from service Acquisition cost Life-to-date mileage Life-to-date parts cost Life-to-date labor cost
8
8 Reporting Status 8 of 26 Florida agencies provided data (typically 8-13 report regularly) Data covers 1,344 fixed-route vehicles (>50% of state fleet): – 986 are 40-foot buses – 31 are 60-foot articulated buses – Vehicle age from less than 1 year to 15 years Data on both fixed-route and paratransit vehicles are collected (1,344 - fixed route, 103 – paratransit) Focus on fixed-route fleet in this presentation
9
9 Transit Fleet Composition Diesel vehicles (89.2% of study sample) 78.1% of diesel buses are 40-foot buses 10.2% 35-foot buses 0.5% 60-foot articulated buses Diesel Hybrids (10.3% of study sample) 36.0% of diesel hybrids are 40-foot buses 28.8% 35-foot buses 18.0% 60-foot articulated buses Battery-Electric (5 vehicles, 0.4% of sample) Gasoline (1 vehicle)
10
10 Fleet Composition by Vehicle Size – Diesel vs. Diesel Hybrid The bulk of vehicles reported are either diesel or diesel hybrids (and a few electric buses) Comparison will focus mainly on these types of vehicles
11
11 Fixed-Route Fleet Performance Comparison – All Bus Sizes Diesel Hybrids vs. Diesel Hybrids demonstrate 38.8% better fuel economy 27.1% lower parts cost per mile 61.8% lower labor cost per mile Diesel hybrids cost 67.7% more to acquire Battery-Electric vs. Diesel Electric buses demonstrate 311.1% better fuel economy 48% lower parts cost per mile 32.7% higher labor cost per mile Battery-electric buses have 238.2% higher acquisition cost
12
12 Performance Comparison Observations Diesel hybrids typically have better fuel mileage, lower costs per mile, but higher acquisition costs Electric buses have significantly better fuel economy, lower parts cost, but higher labor cost and significantly higher acquisition cost Electric and hybrids are younger buses Vehicle size plays an important role in comparison
13
13 Performance Comparison – 40-foot Buses 40-foot Diesel Hybrid vs. 40-foot Diesel Bus 37.6% better fuel mileage 75.7% lower parts cost per mile 88.8% lower labor cost per mile 72.6% higher acquisition cost
14
14 Performance Comparison – 60-foot Buses 60-foot Diesel Hybrid vs. 60-foot Diesel Bus 43.0% better fuel mileage 86.6% higher parts cost per mile 548.7% higher labor cost per mile 32.0% higher acquisition cost Differential in fuel economy is greater for larger buses, but costs per mile increase substantially
15
15 Performance Comparison – 35-foot Buses 35-foot Electric vs. 35-foot Diesel 275.2% better fuel economy 7.6% higher parts cost per mile 523.4% higher labor cost per mile 259.3% higher acquisition cost 35-foot Diesel Hybrid vs. 35-foot Diesel 31.2% better fuel economy 44.0% lower parts cost per mile 44.9% lower labor cost per mile 68.7% higher acquisition cost
16
16 Life-Cycle Impact – Diesel Hybrid Bus Replacing a 40-foot diesel bus with a 40-foot diesel hybrid is projected to: Provide savings of $358,285 (fuel + operating costs) to the agency over the life of the vehicle Break even in 5.8 years Reduce tailpipe emissions NO x – by 2.1 tons CO 2 – by 91.1 tons Environmental benefits are worth $7,253 This projection takes into account costly battery replacement and diesel fuel price of $3/gallon As battery technology improves, potential savings will increase
17
17 Life-Cycle Impact – Battery-Electric Bus Replacing a 40-foot diesel bus with a 35-foot battery- electric bus is projected to: Increase acquisition cost by $855,810 Increase operating costs by $21,182 over the life of the vehicle Provide fuel cost savings worth $210,043 Net result: Increase in life-cycle costs by $666,948 Significantly reduce tailpipe emissions NO x – by 11.9 tons CO 2 – by 1,385.3 tons Environmental benefits are worth $59,998 Price of battery-electric buses needs to drop significantly (or diesel price to increase dramatically) before agencies will be able to realize life-cycle benefits.
18
18 Limitations & Further Steps Limited number of AFVs in Florida fixed-route transit fleet (144 vehicles, 10.7%) Low variety of AFVs in the state transit fleet (diesel hybrids and a few battery-electric) Continuation of data collection is warranted Need to collect data from transit fleet nationwide Bigger dataset More variety of AFVs Improved reliability of analysis Online data collection method
19
19 Thank you! Alexander Kolpakov Center for Urban Transportation Research University of South Florida E-mail: Kolpakov@cutr.usf.eduKolpakov@cutr.usf.edu Phone: (813) 974-4038
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.