Presentation is loading. Please wait.

Presentation is loading. Please wait.

5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.

Similar presentations


Presentation on theme: "5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing."— Presentation transcript:

1 5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing r 5.5 Ethernet r 5.6 Hubs and switches r 5.7 PPP r 5.8 Link Virtualization: ATM

2 5: DataLink Layer5-2 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram to destination IP subnet r MAC (or LAN or physical or Ethernet) address: m used to get datagram from one interface to another physically-connected interface (same network) m 48 bit MAC address (for most LANs) burned in the adapter ROM

3 5: DataLink Layer5-3 LAN Addresses and ARP Each adapter on LAN has a unique LAN address Broadcast address = FF-FF-FF-FF-FF-FF = adapter 1A-2F-BB-76-09-AD 58-23-D7-FA-20-B0 0C-C4-11-6F-E3-98 71-65-F7-2B-08-53 LAN (wired or wireless)

4 5: DataLink Layer5-4 LAN Address (more) r MAC address allocation administered by IEEE r manufacturer buys portion of MAC address space (to assure uniqueness) m Each vendor registers one or more 3 octet OUIs (Organizationally Unique Identifier ) m Many Wireless LANs use MAC address for access control  MAC flat address ➜ portability m can move LAN card from one LAN to another r IP hierarchical address NOT portable m depends on IP subnet to which node is attached

5 5: DataLink Layer5-5 ARP: Address Resolution Protocol r Each IP node (Host, Router) on LAN has ARP table r ARP Table: IP/MAC address mappings for some LAN nodes m TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min) Question: how to determine MAC address of host B when knowing B’s IP address? 1A-2F-BB-76-09-AD 58-23-D7-FA-20-B0 0C-C4-11-6F-E3-98 71-65-F7-2B-08-53 LAN 237.196.7.23 237.196.7.78 237.196.7.14 237.196.7.88

6 5: DataLink Layer5-6 ARP protocol: Same LAN (network) r A wants to send datagram to B, and B’s MAC address not in A’s ARP table. r A broadcasts ARP query packet, containing B's IP address m Dest MAC address = FF-FF-FF-FF-FF-FF m all machines on LAN receive ARP query r B receives ARP packet, replies to A with its (B's) MAC address m frame sent to A’s MAC address (unicast) r A caches (saves) IP-to- MAC address pair in its ARP table until information becomes old (times out) m soft state: information that times out (goes away) unless refreshed r ARP is “plug-and-play”: m nodes create their ARP tables without intervention from net administrator Ethereal example

7 5: DataLink Layer5-7 Routing to another LAN walkthrough: send datagram from A to B via R assume A know’s B IP address r Two ARP tables in router R, one for each IP network (LAN) r In routing table at source Host, find router 111.111.111.110 r In ARP table at source, find MAC address E6-E9-00-17-BB-4B, etc A R B

8 5: DataLink Layer5-8 r A creates datagram with source A, destination B r A uses ARP to get R’s MAC address for 111.111.111.110 r A creates link-layer frame with R's MAC address as dest, frame contains A-to-B IP datagram r A’s adapter sends frame r R’s adapter receives frame r R removes IP datagram from Ethernet frame, sees its destined to B r R uses ARP to get B’s MAC address r R creates frame containing A-to-B IP datagram sends to B A R B

9 5: DataLink Layer5-9 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing r 5.5 Ethernet r 5.6 Hubs and switches r 5.7 PPP r 5.8 Link Virtualization: ATM

10 5: DataLink Layer5-10 Ethernet “dominant” wired LAN technology: r cheap $20 for 100Mbs! r first widely used LAN technology r Simpler, cheaper than token LANs and ATM r Kept up with speed race: 10 Mbps – 10 Gbps Metcalfe’s Ethernet sketch Old cable-line ethernet

11 5: DataLink Layer5-11 Star topology r bus topology popular through mid 90s m all nodes in same collision domain (can collide with each other) r today: star topology prevails m active switch in center m each “spoke” runs a (separate) Ethernet protocol (nodes do not collide with each other) switch bus: coaxial cable star

12 5: DataLink Layer5-12 Ethernet Frame Structure Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame Preamble: r 7 bytes with pattern 10101010 followed by one byte with pattern 10101011 r used to synchronize receiver, sender clock rates MAC addr CRC-32

13 5: DataLink Layer5-13 Ethernet Frame Structure (more) r Addresses: 6 bytes m if adapter receives frame with matching destination address, or with broadcast address (eg ARP packet), it passes data in frame to net-layer protocol m otherwise, adapter discards frame r Type: indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk) r CRC: checked at receiver, if error is detected, the frame is simply dropped

14 5: DataLink Layer5-14 Unreliable, connectionless service r Connectionless: No handshaking between sending and receiving adapter. r Unreliable: receiving adapter doesn’t send acks or nacks to sending adapter m Data field is 46bytes -1,500 bytes If data less than 46 bytes, stuff to be 46bytes –Network layer uses “ length ” field to remove stuffing.

15 5: DataLink Layer5-15 Ethernet uses CSMA/CD r No slots (no sync clock) m Preamble in Ethernet frame is used to sync clock between sender and receiver r adapter doesn’t transmit if it senses that some other adapter is transmitting, that is, carrier sense r transmitting adapter aborts when it senses that another adapter is transmitting, that is, collision detection r Before attempting a retransmission, adapter waits a random time, that is, random access

16 5: DataLink Layer5-16 Ethernet CSMA/CD algorithm 1. Adaptor receives datagram from net layer & creates frame 2. If adapter senses channel idle, it starts to transmit frame. If it senses channel busy, waits until channel idle and then transmits 3. If adapter transmits entire frame without detecting another transmission, the adapter is done with frame ! 4. If adapter detects another transmission while transmitting, aborts and sends jam signal (48-bit, Why?) 5. After aborting, adapter enters exponential backoff: after the m-th collision, adapter chooses a K at random from {0,1,2,…,2 m -1}. Adapter waits K·512 bit times and returns to Step 2

17 5: DataLink Layer5-17 Ethernet’s CSMA/CD (more) Jam Signal: make sure all other transmitters are aware of collision; 48 bits Bit time:.1 microsec for 10 Mbps Ethernet ; for K=1023, wait time is about 50 msec Exponential Backoff: r Goal: adapt retransmission attempts to estimated current load m heavy load: random wait will be longer r first collision: choose K from {0,1}; delay is K· 512 bit transmission times r after second collision: choose K from {0,1,2,3}… r after ten collisions, choose K from {0,1,2,3,4,…,1023} Why exponential? Why random number picking?

18 5: DataLink Layer5-18 CSMA/CD efficiency r T prop = max prop between 2 nodes in LAN r t trans = time to transmit max-size frame r Efficiency goes to 1 as t prop goes to 0 r Goes to 1 as t trans goes to infinity r Much better than ALOHA, but still decentralized, simple, and cheap Why?

19 5: DataLink Layer5-19 802.3 Ethernet Standards: Link & Physical Layers r many different Ethernet standards m common MAC protocol and frame format m different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps m different physical layer media: fiber, cable application transport network link physical MAC protocol and frame format 100BASE-TX 100BASE-T4 100BASE-FX 100BASE-T2 100BASE-SX 100BASE-BX fiber physical layer copper (twister pair) physical layer

20 5: DataLink Layer5-20 Manchester encoding r Used in 10BaseT r Each bit has a transition r Allows clocks in sending and receiving nodes to synchronize to each other m no need for a centralized, global clock among nodes! r Hey, this is physical-layer stuff!

21 5: DataLink Layer5-21 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing r 5.5 Ethernet r 5.6 Interconnections: Hubs and switches r 5.7 PPP r 5.8 Link Virtualization: ATM

22 5: DataLink Layer5-22 10BaseT and 100BaseT r 10/100 Mbps rate; latter called “fast ethernet” r T stands for Twisted Pair r Nodes connect to a hub: “star topology”; 100 m max distance between nodes and hub twisted pair hub

23 5: DataLink Layer5-23 Hubs Hubs are essentially physical-layer repeaters: m bits coming from one link go out all other links m at the same rate m no frame buffering m no CSMA/CD at hub: adapters detect collisions m provides net management functionality twisted pair hub

24 5: DataLink Layer5-24 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r But individual segment collision domains become one large collision domain r Can’t interconnect 10BaseT & 100BaseT hub

25 5: DataLink Layer5-25 Switch r link-layer device: smarter than hubs, take active role m store, forward Ethernet frames m examine incoming frame’s MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment r transparent m hosts are unaware of presence of switches r plug-and-play, self-learning m switches do not need to be configured

26 5: DataLink Layer5-26 Switch: allows multiple simultaneous transmissions r hosts have dedicated, direct connection to switch r switches buffer packets r Ethernet protocol used on each incoming link, but no collisions; full duplex m each link is its own collision domain r switching: A-to-A’ and B- to-B’ simultaneously, without collisions m not possible with dumb hub A A’ B B’ C C’ switch with six interfaces (1,2,3,4,5,6) 1 2 3 4 5 6

27 5: DataLink Layer5-27 Switch Table r Q: how does switch know that A’ reachable via interface 4, B’ reachable via interface 5? r A: each switch has a switch table, each entry: m (MAC address of host, interface to reach host, time stamp) r looks like a routing table! r Q: how are entries created, maintained in switch table? m something like a routing protocol? A A’ B B’ C C’ switch with six interfaces (1,2,3,4,5,6) 1 2 3 4 5 6

28 5: DataLink Layer5-28 Switch: self-learning r switch learns which hosts can be reached through which interfaces m when frame received, switch “learns” location of sender: incoming LAN segment m records sender/location pair in switch table A A’ B B’ C C’ 1 2 3 4 5 6 A A’ Source: A Dest: A’ MAC addr interface TTL Switch table (initially empty) A 1 60

29 5: DataLink Layer5-29 Filtering/Forwarding When switch receives a frame: index switch table using MAC dest address if entry found for destination then{ if dest on segment from which frame arrived then drop the frame else forward the frame on interface indicated } else flood forward on all but the interface on which the frame arrived

30 5: DataLink Layer5-30 Switch example Suppose C sends frame to D r Switch receives frame from from C m notes in switch table that C is on interface 1 m because D is not in table, switch forwards frame into interfaces 2 and 3 r frame received by D hub switch A B C D E F G H I address interface ABEGABEG 11231123 1 2 3

31 5: DataLink Layer5-31 Switch example Suppose D replies back with frame to C. r Switch receives frame from from D m notes in switch table that D is on interface 2 m because C is in table, switch forwards frame only to interface 1 r frame received by C hub switch A B C D E F G H I address interface ABEGCABEGC 1123111231

32 5: DataLink Layer5-32 Switch: traffic isolation r switch installation breaks subnet into LAN segments r switch filters packets: m same-LAN-segment frames not usually forwarded onto other LAN segments m segments become separate collision domains hub switch collision domain

33 5: DataLink Layer5-33 Switches vs. Routers r both store-and-forward devices m routers: network layer devices (examine network layer headers) m switches are link layer devices r routers maintain routing tables, implement routing algorithms r switches maintain switch tables, implement filtering, learning algorithms

34 5: DataLink Layer5-34 Summary comparison


Download ppt "5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing."

Similar presentations


Ads by Google