Download presentation
Presentation is loading. Please wait.
Published byGeorge Fleming Modified over 9 years ago
1
J. B. Natowitz Department of Chemistry and Cyclotron Institute, Texas A&M University, College Station Experimental Investigations of The Equation of State of Low Density Nuclear Matter
3
Exploring The Nuclear Matter Phase Diagram With Collisional Heating Collisions of normal density nuclei create initially compressed and excited systems, which expand and cool. During this process, the properties of the expanding system is manifested in the matter flow, in the energy spectra, and in the yield patterns and nature of produced species which emerge from the collision zone. AMD Calculation TIMETIME Dynamic Evolution Excitation Energy ? Temperatures ? Degree of expansion Composition ? Chemical and Thermal Equilibrium ? Equation of State ? Liquid-gas phase transition?
4
Light Charged Particle Emission - High Total Multiplicity Collisions NIMROD 4 Pi Charged Particles 4 Pi Neutrons
5
Event Selection Neutron + Charged Particle multiplicity distribution for 64 Zn+ 124 Sn. Bin4 corresponds to the most violent collision events Most Violent Collision Events @ 30% Top Highest Multiplicity MnMn M CP
6
Source Analysis of Emission ( Energy, Angle) Source Fitting – 4 He from 40 Ar + 124 Sn PLF 123 10 4 7 56 98 1211 Angular Distribution NNTLF Elab, MeV
7
Reaction Tomography-Particles TLF NN Experiment From Fitting Velocity Plot Protons 40 Ar+ 124 Sn PLF V parallel V perpendicular Evaporation-like Coalescence NN Sum of Sources
8
T C =16.6 0.86 MeV Critical Temperature of Symmetric Nuclear Matter Phys.Rev.Lett. 89 (2002) 212701Phys.Rev. C65 (2002) 034618 employing Skyrme interactions with the = 1/6 density dependence, this value of T c leads to K = 232 22 MeV. Using Gogny interactions with = 1/3 leads to K = 233 37 MeV. These results for K lead to m* value = 0.674 A value of K = 231 5 MeV, was derived by D. H. Youngblood, H. L. Clark, and Y.-W. Lui, Phys. Rev. Lett. 82, 691 (1999) by comparison of data for the GMR breathing mode energy of five different nuclei.
9
K. Hagel et al. Phys. ReV. C 62 034607 (2000) J.B. Natowitz et al., Phys.Rev. C 66 031601 (2002) Derived Average Freeze-Out Densities Coalescence Model Non-Dissipative Analyses Expanding Fermi Gas 47A MeV
10
R ~ 10 km SUPERNOVA NEUTRON STAR STARS Giant Nuclei And Sites of Nucleosynthesis Large Changes in Temperature, Density, Proton/Neutron content
11
C.J. HorowitzC.J. Horowitz, A. Schwenk nucl-th/0507033A. Schwenk
12
ASTROPHYSICAL EQUATIONS OF STATE AT LOW DENSITY DOMINATED BY ALPHA CLUSTERING Density
13
Cluster Formation and The Equation of State of Low-Density Nuclear Matter symmetric nuclear matter, T=2, 4, 8 MeV C.J. Horowitz, A. Schwenk nucl-th/0507033C.J. HorowitzA. Schwenk
14
. nucl-th/0507064 The Virial Equation of State of Low-Density Neutron Matter C.J. Horowitz and A. SchwenkC.J. HorowitzA. Schwenk Clustered Gas VEOS SFSF SESE T/2 Skyrme, Fermi gas etc. SYMMETRY ENERGY(T, )
15
Many Nucear and Astrophysical Phenomena Strongly Affected by the Symmetry Energy At Normal Density a a ~ 23 MeV for Finite Nuclei ~30 MeV for Symmetric Nuclear Matter
16
NN SOURCE EMISSION- Experimental Data and Calculated Yields from AMD and Chimera QMD Codes Average Freeze-out Density 64Zn + 124Sn ~ 0.06 fm -3 “Gas” density ~ A NN /(A tot -A NN ) * 0.06 fm -3 ~ 0.01 fm -3 COALESCENCE
17
Isoscaling Analyses and Symmetry Energy A Comparison of the Yields of Emitted Species for Two Different Sources of Similar Excitation Energy and Temperature but Differing in Their Neutron to Proton Ratios M.B. TsangM.B. Tsang, W.A. Friedman, C.K. Gelbke, W.G. Lynch,W.A. FriedmanC.K. GelbkeW.G. Lynch G. VerdeG. Verde and H.S. Xu, Phys.Rev. C64 (2001) 041603H.S. Xu F sym
18
T α ═ (4F / T)[(Z/A) 2 1 – (Z/A) 2 2 ] n = 0.62 x 10 36 T 3/2 exp[- 20.6/T] Y( 4 He)/ Y( 3 He) cm -3 p = 0.62 x 10 36 T 3/2 exp[ -19.8/T] Y( 4 He)/ Y( 3 H) cm -3 nuc tot = p + n + 2 d + 3 t + 3 3He + 4 Density LOW DENSITY CHEMICAL EQUILIBRIUM MODEL(Albergo) Temperature T HHe = 14.3/ [ln (1.59R)] R = [ Y d ] [ Y 4 He ] [ Y t ] [ Y 3 He ] [ Y t ] [ Y 3 He ] Isoscaling Analyses and Symmetry Energy
19
Clusterization in Low Density Nuclear Matter
20
C.J. HorowitzC.J. Horowitz, A. Schwenk nucl-th/0507033A. Schwenk Private Communication O’Connor, Schwenk, Horowitz Manuscript in Preparation August 2007
21
Neutron Rich Proton Rich
22
p + 112 Sn and 124 Sn d + 112 Sn and 124 Sn 3 He + 112 Sn and 124 Sn 4 He + 112 Sn and 124 Sn 10 B + 112 Sn and 124 Sn 20 Ne + 112 Sn and 124 Sn 40 Ar + 112 Sn and 124 Sn 64 Zn+ 112 Sn and 124 Sn Projectile Energy - 47A Mev Reaction System List Thesis – L. Qin TAMU
23
V par cm/ns V perp cm/ns Significant Temperature Evolution With Velocity Relatively Small Changes with Projectile Size DOUBLE ISOTOPE RATIO T HHe CHEMICAL EQUILIBRIUM TEMPERATURES T HHe = 14.3/ [ln (1.59R)] (albergo) R = [ Y d ] [ Y 4 He ] [ Y t ] [ Y 3 He ] [ Y t ] [ Y 3 He ] Reaction Tomography-Temperatures
24
“Gas” Density TLF REMOVED L. Qin – PhD Thesis, In Progress CHEMICAL EQUILIBRIUM DENSITIES (Albergo) FROM ISOTOPE RATIOS Fm -3 Reaction Tomography-Densities
25
64 Zn 40 Ar 20 Ne 10 B 4 He DERIVED VALUES OF F sym as a FUNCTION of VELOCITY 47 MeV/u Projectiles on 112 Sn, 124 Sn V parallel NN V perpendicular
28
K. Hagel et al. PHYSICAL REVIEW C 62 034607 (2000) J.B. Natowitz et al., Phys.Rev. C66 (2002) 031601 Derived Average Freeze-Out Densities Coalescence Model Non-Dissipative Analyses Expanding Fermi Gas
30
E sym(nuclides) = E sym(NM) (1 + 2.7/A 1/3 ) P. Danielewicz
32
Few Body Syst.Suppl. 14 (2003) 361-366 Eur.Phys.J. A22 (2004) 261-269 M. Beyer, G. Roepke et al., Phys.Lett. B488, 247-253 (2000) IN MEDIUM BINDING ENERGIES and MOTT TRANSITION
33
Alpha Mass Fractions
34
Note: Same at low density Rho LE ~.005 fm -3 M. Beyer et al. nucl-th/0310055 Light Clusters in Nuclear Matter of Finite Temperature
36
Correlations Bose Condensates Superfluidity Efimov States
37
E. Bell 1, M. Cinausero 2, Y. El Masri 6,D. Fabris 3, K. Hagel 1, J. Iglio 1, A. Keksis 1, T. Keutgen 6, M. Lunardon 3, Z. Majka 4, A. Martinez-Davalos, 5 A. Menchaca-Rocha 5, S. Kowalski 1,T. Materna 1, S. Moretto 3, J. B. Natowitz 1, G. Nebbia 3, L. Qin 1, G. Prete, 2 R. Murthy 1, S. Pesente 3, V. Rizzi, 3 D. V. Shetty 1, S. Soisson 1, B. Stein 1, G. Souliotis 1, P. M. Veselsky 1,A. Wieloch 1, G. Viesti 3, R. Wada 1, J. Wang 1, S. Wuenshel 1, and S. J. Yennello 1 1 Texas A&M University, College Station, Texas 2 INFN Laboratori Nazionali di Legnaro, Legnaro, Italy 3 INFN Dipartimento di Fisica, Padova, Italy 4 Jagellonian University, Krakow, Poland 5 UNAM, Mexico City, Mexico 6 UCL, Louvain-la-Neuve, Belgium
38
Major Contributors M. Barbui, A. Bonasera, C. Bottosso, M. Cinausero, Z. Chen, D. Fabris, Y. El Masri, K. Hagel, T. Keutgen, S. Kowalski, M. Lunardon, Z. Majka, S. Moretto, G. Nebbia, J. Natowitz L. Qin, S. Pesente, G. Prete, V. Rizzi, P. Sahu, S. ShlomoJ. Wang, G. ViestiM. CinauseroZ. ChenD. FabrisY. El MasriK. HagelT. KeutgenS. KowalskiM. LunardonS. MorettoG. NebbiaJ. NatowitzL. QinS. PesenteG. PreteV. RizziG. Viesti S. Shlomo, A. Ono, G. Roepke A. Schwenk, E. O’Connor AND THE NIMROD COLLABORATION TAMU, PADOVA, LEGNARO, KRAKOW, LOUVAIN la NEUVE, CATANIA, LANZHOU
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.