Download presentation
Presentation is loading. Please wait.
Published byClaire Owen Modified over 9 years ago
1
1 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Lecture notes: Prof. Maurício V. Donadon NUMERICAL METHODS IN APPLIED STRUCTURAL MECHANICS
2
2 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Non-linear static problems
3
3 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Introduction
4
4 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Sources of nonlinearities in structural analysis Geometrical non-linearity Non-linear material behaviour Non-linear boundary conditions
5
5 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Geometrical nonlinearities Normal strain-displacement relationships
6
6 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Geometrical nonlinearities Shear strain-displacement relationships
7
7 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Geometrical nonlinearities
8
8 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Nonlinear material behaviour ELASTIC ELASTO-PLASTIC ELASTIC + MICROCRACKING
9
9 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Nonlinear material behaviour
10
10 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Nonlinear material behaviour
11
11 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Nonlinear boundary conditions Transient boundary problems: Boundary conditions change during the analysis!!!
12
12 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Nonlinear boundary conditions
13
13 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Solution methods for non-linear static problems
14
14 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Incremental solutions Iterative solutions Combined incremental/iterative solutions Arc-length method Quasi-static solutions Solution methods
15
15 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 General form for a static problem K = K 0 f(x) FeFe Example: Linear/Nonlinear Spring
16
16 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Linear/Nonlinear Spring
17
17 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 General form for a static problem Example: Linear/Nonlinear Spring Trivial solution: Displacement control Non-trivial solution: Load control which is commonly used in structural analyses!!!
18
18 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Incremental solution
19
19 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 INCREMENTAL SOLUTION METHOD BASED ON THE EULER METHOD
20
20 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 THE EULER METHOD ALGORITHM
21
21 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring
22
22 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring
23
23 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring
24
24 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Iterative solution
25
25 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 ITERATIVE SOLUTION BASED ON THE NEWTON RAPHSON METHOD
26
26 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 THE NEWTON RAPHSON ALGORITHM
27
27 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring
28
28 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring
29
29 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring
30
30 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Combined incremental/iterative solutions
31
31 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 COMBINED INCREMENTAL/ITERATIVE SOLUTIONS
32
32 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 INCREMENTAL/ITERATIVE SOLUTION ALGORITHM
33
33 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring
34
34 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring
35
35 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring
36
36 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length Method
37
37 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Highly non-linear structural responses snap-through snap-back
38
38 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method: Single DOF
39
39 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method: Constraint equation b: scale factor, scale forces to the same order of magnitude of the displacements
40
40 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method: Residual force Equations to be solved simultaneously
41
41 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method
42
42 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method
43
43 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method Equations to be solved simultaneously Augmented stiffness matrix
44
44 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method Error function computation:
45
45 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method Constant arc-length algorithm:
46
46 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Arc-length method Variable arc-length algorithm:
47
47 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method: b=0 The computational cost associated with the inversion of the augmented stiffness matrix during the iterations is very high because the augmented stiffness matrix is neither symmetric nor banded! The scale factor is unknown “a priori” Better solution: Spherical Arc-length!!!!
48
48 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method
49
49 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method
50
50 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method
51
51 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method
52
52 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method
53
53 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method Choosing the root Solution 1Solution 2
54
54 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Spherical Arc-length method The predictor solution
55
55 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256
56
56 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Quasi-static solutions
57
57 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 DYNAMIC RELAXATION Example: Nonlinear Spring K = K 0 f(x) M F e (t) C
58
58 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Central difference method DYNAMIC RELAXATION Critical time step computation
59
59 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Central difference method DYNAMIC RELAXATION Displacement field Velocity field
60
60 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Damping definition DYNAMIC RELAXATION Critical damping Rayleigh damping
61
61 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 EXPLICIT TIME INTEGRATION ALGORITHM 1. Initial conditions, v 0, σ 0, n=0, t=0, compute M 2. Compute acceleration a n = M -1 F e,n 3. Update nodal velocities: v n+1/2 = v n+1/2-α + αΔta n 4.α = 1/2 if n=0 5.α = 1 if n>0 6.Update nodal displacements: u n+1 = u n + Δtv n+1/2 7.Compute strains 8.Compute stresses 9.Compute internal forces 10. Compute residual force vector: F i - F e 11.Update counter and time: n = n+1, t = t+Δt 12.If simulation not complete go to step 2
62
62 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring
63
63 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring
64
64 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – 1.0 N/s
65
65 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – 0.1 N/s
66
66 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – 0.01 N/s
67
67 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – Damping effect T low =0.22 T high =0.12
68
68 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – Damping effect
69
69 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – Damping effect
70
70 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – Damping effect
71
71 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Example: Nonlinear Spring – Damping effect
72
72 Instituto Tecnológico de Aeronáutica Prof. Maurício Vicente Donadon AE-256 Over damping effects in dynamic relaxation Over damping MUST BE AVOIDED in dynamic relaxation methods! Special care must be taken with over damping Over damping increases artificially the internal energy of the system!!!!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.