Presentation is loading. Please wait.

Presentation is loading. Please wait.

September 2003©2003 by H.L. Bertoni1 VII. Diffraction by an Absorbing Half-Screen Kirchhoff-Huygens Approximation for Plane Wave Diffraction by an Edge.

Similar presentations


Presentation on theme: "September 2003©2003 by H.L. Bertoni1 VII. Diffraction by an Absorbing Half-Screen Kirchhoff-Huygens Approximation for Plane Wave Diffraction by an Edge."— Presentation transcript:

1 September 2003©2003 by H.L. Bertoni1 VII. Diffraction by an Absorbing Half-Screen Kirchhoff-Huygens Approximation for Plane Wave Diffraction by an Edge Geometrical Theory of Diffraction Uniform Theory of Diffraction

2 September 2003©2003 by H.L. Bertoni2 Plane Wave Illumination of an Absorbing Half-Plane z x y r  dy dz ( x, y, 0 )

3 September 2003©2003 by H.L. Bertoni3 Evaluation of the Integration Over z The Contribution to the integral come from a small region about z = 0

4 September 2003©2003 by H.L. Bertoni4 Evaluation of the Integration Over y We distinguish two cases that are most easily solved 1) Well inside the region y > 0 illuminated by the plane wave. 2) Well inside the shadow region y < 0.  R  X  y’ y  R   X y’ y

5 September 2003©2003 by H.L. Bertoni5 Inside the Illuminated Region y > 0 y y Interrupted cancellation Cancellation of alternate half cycles

6 September 2003©2003 by H.L. Bertoni6 Evaluating y Integral for y > 0

7 September 2003©2003 by H.L. Bertoni7 Evaluating y Integral for y > 0 - cont.

8 September 2003©2003 by H.L. Bertoni8 Evaluating y Integral for y > 0 - cont. Y    x Incident plane wave

9 September 2003©2003 by H.L. Bertoni9 Inside the Shadow Region y < 0 y y Interrupted cancellation Cancellation of alternate half cycles

10 September 2003©2003 by H.L. Bertoni10 Evaluating y Integral for y < 0

11 September 2003©2003 by H.L. Bertoni11 Geometrical Theory of Diffraction (GTD ) (  ) y x Shadow boundary Diffracted Cylindrical wave Incident Plane wave

12 September 2003©2003 by H.L. Bertoni12 GTD Valid Outside Transition Region Fresnel zone Shadow boundary Incident plane wave y x

13 September 2003©2003 by H.L. Bertoni13 Example of Shadowing at Building Corners Building y x From Transmitter 2 m

14 September 2003©2003 by H.L. Bertoni14 Uniform Theory of Diffraction for Small y

15 September 2003©2003 by H.L. Bertoni15 Evaluating End Point Integrals

16 September 2003©2003 by H.L. Bertoni16 Evaluating End Point Integrals - cont.

17 September 2003©2003 by H.L. Bertoni17 Evaluating End Point Integrals - cont.

18 September 2003©2003 by H.L. Bertoni18 Approximation for F(s)

19 September 2003©2003 by H.L. Bertoni19 Field at the Shadow Boundary

20 September 2003©2003 by H.L. Bertoni20 Value of F(s) for Large s

21 September 2003©2003 by H.L. Bertoni21 Variation of Field Near Shadow Boundary Y  x x= 30 m -10-50510 -30 -25 -20 -15 -10 -5 0 5 Received Signal(dB) y(meters) WFWF -W F


Download ppt "September 2003©2003 by H.L. Bertoni1 VII. Diffraction by an Absorbing Half-Screen Kirchhoff-Huygens Approximation for Plane Wave Diffraction by an Edge."

Similar presentations


Ads by Google