Download presentation
Presentation is loading. Please wait.
Published byKelley Hancock Modified over 9 years ago
1
AAE450 Spring 2009 Primary structure for Orbital Transfer Vehicle (OTV) Tim Rebold STRC [Tim Rebold] [STRC]
2
AAE450 Spring 2009 Dnepr User’s Guide –Requirements Volume & mass Center of gravity (CG) offset Limit Loads Stiffness Requirements Primary Structure –Transfer loads throughout structure –Handle loads greater than that created by their own weight –Secondary structure will support and mount equipment [Tim Rebold] [STRC] Payload Center of Gravity Limit Loads (g's) Acceleration AxialLateral 1 st stage burn: Maximum lateral acceleration 3.0±0.50.5±0.5 2 nd stage burn: Maximum longitudinal acceleration 7.8±0.50.2 cg OTV Table based from Dnepr User’s Guide
3
AAE450 Spring 2009 Primary Structure Assumptions –Symmetry: no lateral displacement of cg –Loads uniformly distributed –Contribution of thin sheets to bending & compression is negligible –Worst case scenario: CG maximum distance axially [Tim Rebold] [STRC] L t D Rings Stiffeners Conclusions Mass: 166 kg Cost: $ 1500 M inert budget: <70 kg f inert = 0.4 Thin wall shear panels Floor supports (beams)
4
AAE450 Spring 2009 References [Tim Rebold] [STRC] Delta II Payload Planners Guide http://snebulos.mit.edu/projects/reference/launch_vehicles/Delta/DELTA_I I_User_Guide_Update_0103.pdf Skullney, W.E. Fundamentals of Space Systems. 2 nd Edition. Ch. 8, pp.465-564 Oxford University Press, 2005. “Properties of Materials.” 2009. Purdue University. http://www.lib.purdue.edu/eresources/wts/result.html?WTSAppName=Lib _edupackk http://www.lib.purdue.edu/eresources/wts/result.html?WTSAppName=Lib _edupackk Sun, C.T. Mechanics of Aircraft Structures. New York: John Wiley and Sons, 2006. Dnepr User’s Guide http://snebulos.mit.edu/projects/reference/launch_vehicles/DNEPR/Dnepr_ User_Guide.pdf http://snebulos.mit.edu/projects/reference/launch_vehicles/DNEPR/Dnepr_ User_Guide.pdf
5
AAE450 Spring 2009 Future Work Mass breakdown sheet in Excel –Include mass, cg, operating temperature range, and inertia matrix of all subsystems and components that make up the OTV and its payload (lander & rover) Matlab script –Read data from Excel to calculate entire OTV (with payload) cg, and inertia matrix (about cg coordinates) in stowed (launch) and deployed (trans-lunar) stages FEM analysis –Obtain better approximation of cg and inertia values –Perform modal analysis to see if OTV meets stiffness requirements placed on Delta II payload [Tim Rebold] [STRC]
6
AAE450 Spring 2009 Dnepr Payload Requirements [Tim Rebold] [STRC] Payload Center of Gravity Limit Loads (g's) Acceleration AxialLateral 1 st stage burn: Maximum lateral acceleration 3.0±0.50.5±0.5 2 nd stage burn: Maximum longitudinal acceleration 7.8±0.50.2 Notes: 1.Lateral accelerations may act in any direction, simultaneously with longitudinal ones 2. Dynamic accelerations are preceded by “±” symbol Spacecraft System Stiffness Requirements Thrust (Hz)Lateral (Hz) 2010 Tables based from Dnepr User’s Guide
7
AAE450 Spring 2009 Limit Loads [Tim Rebold] [STRC] D = 2.7 m L = 2.7 m cg 2.0 m +8.3 g axial limit load 0.2 g lateral limit load m OTV = 1000 kg L and D determined from mission volume needs & fairing restrictions Worst case: limit loads applied at CG
8
AAE450 Spring 2009 Primary Structure [Tim Rebold] [STRC] L t D Rings Stiffeners Thin wall shear panels Carry compressive and bending loads Provide stability by increasing buckling critical loads Carry shear loads Floor supports (beams) Aluminum 7075-T6 Material selected for all structural elements
9
AAE450 Spring 2009 Margin of Safety [Tim Rebold] [STRC] allowable experienced x FS MS = - 1 FS : Factor of Safety (FS=1.6 in these calculations) “allowbable” can be yield tress or critical buckling load “experienced” can be actual stress or applied load
10
AAE450 Spring 2009 Matlab scripts [Tim Rebold] [STRC] % AAE 450 STRC code % Author: Tim Rebold % Given the volume dimensions (circular cylinder) and acceleration loads % (g's), this script will calculate the basic structural component % characteristics (weight,numer,size) for the primary structure of the OTV % Note: This script is intended to be used in SI units. % Inputs: % L=length of OTV in units of meters D=diameter of OTV in units of meters % m=Launch Vehicle payload mass (OTV) % limit_loads=vector [axial g's, lateral g's]; maximum flight loads function [stiff_num,ring,t,Mass,Cost]=primary_structure(L,D,limit_loads); clc; g=9.80665; %gravity [m/s^2] r_o=D/2; %outer radius %[m]
11
AAE450 Spring 2009 [Tim Rebold] [STRC] %Material Properties for Al 7075-T6 (reference 4) Fy=480*10^6; %Yield stress [Pa] Fu=550*10^6; %Ultimate stress [Pa] E=72*10^9; %tensile modulus of elasticity [Pa] v=0.33; %Poisson's ratio rho=2768; %density [kg/m^3] cost=25000; %~US dollars per cubed meter %Mass Estimate of OTV on Launch Vehicle (LV) ratio=0.3; %payload to total mass ratio mpay=300; %[kg] payload estimate (lander+rover+10kg) m=mpay/ratio; %[kg] axial=g*m.*limit_loads(1); %axial load on payload [N] lat=g*m.*limit_loads(2); %lateral load on payload [N] %Center of Gravity (CG) Requirements for 6915 PAF interface cg=2.0; %[m] %Material Factor of Safety %Fs2=1.6; %(2) p.491 needs no static qualification Fs2=1.3; %(3) p.54 Matlab scripts (continued)
12
AAE450 Spring 2009 [Tim Rebold] [STRC] % ASSUMPTIONS made in Structural Analysis % Stiffeners take all the compressive and bending stresses % Shear Panels (Thin walled cylinder) take shear loads; no analysis % done in this script, wall thickness assumed to be 2 mm (standard?) % Loads are uniformly distributed % CG has no lateral offset % Mass is uniformly distributed throughout length of OTV to yield given %%%% % Stiffeners % %%%% % Bending Stress Analysis % Assumption: % Stiffeners bear all bending and compressive stresses (1) p. 124 % Stiffeners placed in such away that Iyz=0; My=lat*cg; %Circular hollow cross-section assumed with thickness of 2mm & diameter 2cm d=0.02; t=0.002; r=r_o-0.002-d/2; %radius out to center of stiffener A=pi*(d^2/4-(d-2*t)^2/4); %individual stiffener area Matlab scripts (continued)
13
AAE450 Spring 2009 [Tim Rebold] [STRC] %Global Bending Analysis (1) p. 125 stiff_num=0; for k=1:1:10; theta=0; Iy=0; Iz=0; Iyz=0; for stiff=1:1:k; %moment of inertia for entire OTV cross-section (stiffeners only %contribute) Iy=Iy+A*(sin(theta*pi/180)*r_o)^2; Iz=Iz+A*(cos(theta*pi/180)*r_o)^2; Iyz=Iyz+A*(sin(theta*pi/180)*r_o)*(cos(theta*pi/180)*r_o); theta=theta+360/k; end stress_b=axial/(k*A)+My*r/Iz; %bending stress MS(k)=Fy/(stress_b*Fs2)-1; %margin of safety if MS(k)>0 & stiff_num==0; stiff_num=k; else end plot([1:10],MS,'b',[1:10],zeros(1,10),'k') title('Stiffener Bending Analysis');xlabel('Number of Stiffeners'); ylabel('Margin of Safety (MS)');legend('MS','Zero Margin'); Matlab scripts (continued)
14
AAE450 Spring 2009 [Tim Rebold] [STRC]
15
AAE450 Spring 2009 [Tim Rebold] [STRC] %%%%%%%% % Stiffener Buckling Analysis % %%%%%%%% % Assumptions: Load uniformly distributed among each individual stiffener % Stiffener Boundary Conditions treated as fixed-free (1) p.231 I=pi*((d/2)^4-((d-2*t)/2)^4)/4; %moment of inertia for indiviudal stiffener %Indiviual Loads / Stiffener stiff_load=1/stiff_num; %Mass Distribution z=1; %[m] distance from payload bay / OTV interface to payload CG m1=m*cg/L-2*(1+z-cg/2)*mpay; m2=m-m1-mpay; % Above cg: Below cg: am=m1/(L-cg); bm=m2/cg; %run down from top to bottom of stiffener, applying force created from mass %above to stiffener. mass is uniformly distributed so that the CG is placed %at the location specified i=1; length=0; %increment & initializations Matlab scripts (continued)
16
AAE450 Spring 2009 [Tim Rebold] [STRC] while length<=L; le=0; while le==0 & length<=L if length<(L-cg) ms=(mpay+length*am)*stiff_load; %mass above supporting stiffener else ms=(mpay+m1+(length-(L-cg))*bm)*stiff_load; end Nx=ms.*limit_loads(1).*g; %applied load above supporting stiffener Pcr=pi^2*E*I/(4*(L-length)^2); %critical buckling load MS=Pcr/(Nx*Fs2)-1; if MS<0; le=sqrt((pi^2*E*I)/(Nx*4)); %effective length ring(i)=(L-length-le); i=i+1; add=le; else add=0.01; end length=length+add; end Matlab scripts (continued)
17
AAE450 Spring 2009 [Tim Rebold] [STRC] %plotting [row,lr]=size(ring); figure(2) for inc=1:lr; plot([0,D],[ring(inc),ring(inc)],'b'); hold on end title('Stiffener Buckling Analysis');xlabel('OTV Floor [m]'); ylabel('Ring Positions [m]'); %%%%% % Floor Supports % %%%%% %Analysis of Beam supports at floor % Assumptions: Load uniformly distributed among each individual support % 4 Rectangular hollow beams assumed % of dimensions (height x width)= 10 cm x 5 cm b=0.04; h=0.08; Matlab scripts (continued)
18
AAE450 Spring 2009 [Tim Rebold] [STRC]
19
AAE450 Spring 2009 [Tim Rebold] [STRC] %Worst Case Scenario dPAF=2; %diameter of PAF [m] arm=(D/2-dPAF/2) %length of beam [m] Mc=arm*axial/4 %compressive load creates bending moment %at base of beam [Nm] Mlat=lat*cg/4 %moment created from lateral accelerations [Nm] %find thickness of beams to support these loads t=0; for T=0.0005:0.0001:0.10; I=b*h^3/12-(b-2*T)*(h-2*T)^3/12 stress_b=(Mc+Mlat)*(h/2)/I; MS=Fy/(Fs2*stress_b)-1 if MS>0 & t==0; t=T; else end Matlab scripts (continued) %%%%%% % Cost and Weight % %%%%%% %Weight %PAF ring interface (5cm thickness) Vpaf=pi*((dPAF/2)^2-((dPAF-0.1)/2)^2)*h %Floor beams (4) Vbeams=arm*(b*h-(b-2*t)*(h-2*t))*4 %Stiffeners Vstiff=A*stiff_num*L %Shear Panels (1.5mm thickness assumed) Vshear=pi*D*L*0.0015+0.0015*pi*D*sqrt((D/2)^2+1.9^2)/2 %Total volume Vol=Vshear+Vstiff+Vbeams+Vpaf %Cost (without manufacturing costs) Cost=Vol*cost; Mass=Vol*rho;
20
AAE450 Spring 2009 [Tim Rebold] [STRC] %%%% % Future Work % %%%% %Shear panel thickness %Bi-directional bending of stiffeners %Torsion of floor beam members %Von Mises Stress Failure Criteria %Ring Weight & Size %%%% % References % %%%% %(1) Meachanics of Aircraft Structure, CT. Sun %(2) Fundamentals of Space Systems, V.L. Pisacane %(3) NASA SP-8007 %(4) Statics and Mechanics of Materials %(5) Dnepr User's Guide %(6) Delta II Payload Planners Guide return Matlab scripts (continued)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.