Download presentation
Presentation is loading. Please wait.
Published byMargery Green Modified over 9 years ago
1
Jet-Gas Interactions in Seyfert Galaxies Mark Whittle (Virginia) David Rosario (Virginia) John Silverman (Virginia) Charlie Nelson (Drake) Andrew Wilson (Maryland)
2
Outline Brief review of : AGN & Jets & Emission lines Reasons to study jet-gas interactions (JGI) Case study of Seyfert Galaxy : Mkn 78 Observations & data overview Heuristic description of JGI Ionization analysis Dynamical analysis
3
Active Galaxies All galaxies have nuclear black holes Those currently accreting are “active” Accretion energy released in two forms
4
A : Photons Thermal & non-thermal processes Broad SED : Optical / UV / X-ray Large range in luminosity : LINER Seyfert QSO
5
AGN Spectral Energy Distribution (SED) Radio far-IR optical EUV X-ray
6
Seyferts (NGC 4151) Low Luminosity Quasars High Luminosity
7
B : Bipolar Outflows (Jets) Origin uncertain (MHD driven ?) Velocity uncertain : –Some relativistic, others not Content uncertain : (p + e - or e + e - ?) –Relativistic component : e - + B radio –Other (thermal) components ? Large luminosity range : –Radio loud (radio galaxies/QSRs) –Radio quiet (Seyferts/QSOs)
9
Radio Galaxy 3C 296 Flux ~ few Jy Radio Loud Seyfert Galaxy Mkn 573 Flux ~ few mJy Radio Quiet
10
From ionized gas : T e ~ 10 4 K, n e ~ 10 2 – 10 9 cm -3 Ionization mechanism ? – Photoionization (yes) – Shock related (maybe with jets?) Profiles reveal (Doppler) velocities BLR (R ~ 10 -2 pc, V 2 ~ GM BH /R) NLR-1 (R ~ 1 kpc, V 2 ~ GM bul /R) NLR-2 (R ~ 1 kpc, V ~ jet related) Nested emission line regions BH << AD << BLR << NLR << Gal r/c : min hr week 10 3 yr 10 4 yr Emission Lines
11
Jet-gas interactions occur in many contexts –AGN (ISM/IGM) –Stellar jets (DMC/ISM) –Starburst winds (ISM/IGM) Laboratory for astrophysical hydrodynamics Seyfert ELRs allow important diagnostics –Gas mass, velocity, KE, momentum, pressure –Complements radio source pressure/energy Why study JGI in Seyferts ?
12
Mkn 78 : jet-gas archetype Early ground based data suggest prominent JGI : Luminous triple radio source Strong double [OIII] profile FWHM >> gravitational velocities
13
Mkn 78
14
Unfortunately, Mkn 78 is quite distant : cz ~ 11,000 km/s 1 arcsec ~ 700pc B T ~ 15.2 M B ~ -20.8 Dull looking early type galaxy Need HST resolution
15
KPNO 2.1 m Red Continuum 30 arcsec Mkn 78
16
Mkn 78 : HST & VLA Dataset VLA : 3.6cm 8hr map HST images : (FOC, PC, STIS, NICMOS) –Continuum : UV/green/near-IR –Emission line : [OIII] 5007 HST spectra : (STIS, FOS) –4 slits : good spatial coverage –4 gratings : low resolution : UV & optical high resolution : [OIII] 5007
17
Dust lane Optical Near IR arcsec NICMOS F160W STIS CCD clear
18
3.6cm radio [OIII] λ5007 arcsec
19
[OIII] 5007 Image : ENLR
20
4 STIS Slit Positions
21
STIS low dispersion spectral data
22
STIS high dispersion [OIII] 5007 data
23
Mkn 78 Case Study : Jet-gas interactions 1.Heuristic description 2.Ionization study 3.Dynamical study 4.Jet properties
24
Overlay : Radio (contours) & [OIII] (image)
25
STIS high dispersion [OIII] 5007 data
26
1. Heuristic Description 1.Inner W-knot Jet ends & disrupts; some gas disturbance ? DMC enters & disrupts flow; recent interaction 2.Eastern fan Jet deflected; split lines; “blow-back” shape ? Cloud inertia deflects jet (doesn’t destroy it) ? Radial + lateral motion induced (±300 on 400) ? Intermediate age : begun to disrupt cloud 3.Outer W-lobe Components; complex velocity ; no bow shock ? late stage; dispersing cloud remnants; leaky bubble
27
2. Ionization Study Low dispersion spectra many line fluxes Compare line ratios with : 1.Ionization models (U, A m/i, Shock) 2.Velocities ( V bulk & FWHM ) 3.Location (radius) 4. Other things (radio/color/dust)
28
Ionization mechanisms Three basic contexts explored : 1.U – sequence : AGN photoionization 2.A m/i – sequence : AGN photoionization 3.Shock – sequence : shock ionization Cartoon illustrates these
29
AGN UV Photo-ionized precursor Collisionally ionized & photo-ionized post-shock gas shock Neutral Back Ionized front Optically Thin clouds V sh 1) U sequence 2) A m/i sequence 3) Shock sequence U = N i /N e ~ 10 -2 – 10 -3 Optically Thick Clouds Only Optically Thick & Thin Clouds A m/i = A m /A i ~ 0.1 – 10 V sh = 100 – 800 km/s Auto-ionizing Shocks Doptia & Sutherland : ‘95, ‘96, ‘03 Binette et al : ‘96 Ferland’s, CLOUDY AGN UV
30
Line ratios vs models Line ratios vs models a)General excitation/ionization b)Discriminators to separate Sh & U+A m/i c)Discriminators to separate U & A m/i d)[ [OI] 6300 anomalous line ] e)[ Nuclear nitrogen enhancement ]
31
U A m/i Sh Excitation : All models OK U ~ 10 -2 – 10 -3 A ~ 30% – 90% Sh ~ 500 – 300 km/s
32
U A m/i Sh Discriminators 1 Trends follow U & A Don’t follow shocks
33
U A m/i Sh Discriminators 2 e.g. [NeV], HeII, & [OIII]4363 U poor, favours A m/i trend fits nicely Note : weak [NeV] in Mkn 78 requires new A m/i
34
1.Clean results because enough data to show trends 2.Current shock models are excluded 3.Photoionization by the AGN dominates 4.Gas contains both optically thick & thin clouds Ratios vs models : Summary Now consider ratios vs gas velocity
35
Shock Excitation vs FWHMExcitation vs V –V sys Shock Results summary
36
1.Essentially no (v. weak) correlations : ionization conditions independent of velocity 2.Shock model predictions very poor Ratios vs velocity : Summary Now consider ratios vs radius
37
Radius : Strong correlation photoionization U drops ~ r –1 density ~ r –1 [SII] difficult to confirm A m/i drops with r more thin @ small r Excitation vs Radius
38
Final check : UV Luminosity Check photoionization : –Can UV luminosity power emission lines ? But UV is invisible/obscured ?! Take FIR luminosity = reprocessed UV –L UV ~ L FIR ~ 4 π d 2 F FIR ~ 4 π d 2 [2.6S 60 + S 100 ] Check : –L UV ~ L em ~ 10 x L 5007 as observed –U ~ N UV /n e ~ 10 -2.5 as observed
39
3. Dynamical Study To go beyond heuristic description : –Need physical properties –Aim to evaluate these throughout regions –First consider ionized gas –Then consider other components
40
Slit B : kinematic measurements -2 -1 0 +1 +2 +3 East Nuc West Peak Velocity FWHM
41
Mass KE Extinction Density Line flux Momentum
42
Simple Properties Three regions : Inner knot / East fan / West lobe Region Age : Age ~ size/velocity : ~ 0.4 / 4 / 8 Myr Ionized gas : Mass : ~ 0.4 / 1.0 / 1.1 x 10 6 M sun Filling factor : ~ 30 / 1.5 / 0.5 x 10 -4 Covering factor : ~ 0.5 / 0.5 / 0.5 Consider other components
43
The Various Components ISM n ism ~ 1 Relativistic gas : ff rel ; P rel ~ B 2 /8π Thermal gas : n th ; P th ; T th Line Emitting gas : ff em ; n em ; P em ; V em Assume/show : P rel ~ P th ~ P em ~ P ism
44
Log P / k ~ 6.5 / 6.0 / 5.5 K cm -3 –Quite high > radio galaxy lobes –All components deep within galaxy ISM All pressures drop with radius (~ r -1 ) –As expected for galaxy ISM context Approximate pressure balance between different components : P rel ~ P em (~ P th ) Relativistic & radiation pressure too low to accelerate ionized gas (by ~ x 10) –Need dynamical (ram) pressure of jet Pressures : P rel, P em, P th, P rad
45
Energy Comparisons Relative energies in different parts : –UV (FIR) ~ 1000 (~10 43 erg/s) –Emission lines ~ 1000 –Kinetic ~ 1 –Relativistic ~ 1 –Expansion /lobe ~ 1 –Radio ~ 0.2 Simple inferences
46
1.Photons dominate by x 1000 ; L em ~ L UV supports photo- over shock ionization should not derive L jet from L em (see later) 2. Expansion / KE / Relativistic all similar flows can accelerate gas & power radio source Conclusions from energy comparisons
47
4. Jet Properties Estimating jet energy and momentum : Use emission line & lobe properties : E j ~ KE em + α e E lobe ~ 2-5 E lobe α e = synchrotron loss; adiabatic loss; ff rel L j = E j /T age ~ 2-5 x 10 40 erg/s G j ~ α m G em ~ 2-5 G em α m = covering factor loss ; drag loss F j = G j /T age ~ 2-5 x 10 33 dyne
48
F j ~ α m G em / t age FjFj G em ~ ΣM V JET MOMENTUM JET LUMINOSITY L j ~ (E KE + α e E rel )/t age E lobe ~ PV ~ α e E rel LjLj E KE ~ Σ½M V 2 α e ~ α syn α ad α ff ~ 2 – 10 α m ~ α drag α lcf ~ 2 – 5
49
Jet Properties (model) Components : –Relativistic & thermal; ratio defined by ff rel –Both move at V j Pressure balance : P rel ~ P th –We know P rel from radio physics ~ B me /8 π Energy : E j ~ KE th + W th + W rel –W rel = (4/3)P rel ; W th = (5/2) P th Momentum : G j ~ G th + G rel = G th –Relativistic component has ~zero inertia 2
50
Jet Properties (derived) Use L j G j P j A j to derive many properties (>100pc) Thermal material dominates jet energy and momentum –Relativistic gas has little/no momentum –KE j /U j ~ F j /A j /P j ~ 10 / 3 / 2 KE dominates energy Jet velocity ~ 1-few x V gas –2L j /F j ~ V j ~ 300 – 3000 km s -1 Ram pressure dominates : P ram ~ 30 / 7 / 4 x P rel –Can accelerate to V em over T age for N col ~ 10 21 cm -2 –Only mild shocks : P ram ~ ρ em V sh 2 V sh ~ 10-50 km s -1 –Not acceleration by impulsive shocks; maybe wind/ablation
51
Jet Properties (derived) Jet density (thermal) : 0.1 - 5 cm -3 –Consistent with entrained ISM Jet temperature : T j ~ P j /n j k ~ 10 6 K – ~ 0.1-0.7 Temperature from thermalized V j –again consistent with entrained ISM Jet Mach number : 5 / 2.5 / 2 transonic –Consistent with entrainment and decollimation Jet mass flux : ~ M em over region lifetime –Could be entrained ISM –Could become ‘thermal’ component of lobe
52
Comparison with previous work Many partial interpretations One thorough analysis : Bicknell, Dopita & Sutherland ’98 They use shocks to infer jet properties, in particular : jet energy & momentum This yields significantly different results
53
L j ~ L em ~ 100 x L 5007 Bicknell et al ‘98 Emission Lines : L em LjLj For Mkn 78 & other Seyferts : L j (them) ~ 1000 x L j (us) JET LUMINOSITY Shock L j ~ (E KE + αE rel )/t age Our analysis E lobe ~ PV ~ αE rel LjLj E KE ~ Σ½M V 2
54
ρ j V j 2 ~ ρ em V sh Bicknell et al ‘98 P ram ~ ρ j V j 2 For Mkn 78 & other Seyferts : F j (them) ~ 100 x F j (us) JET MOMENTUM Shock ρ em V sh 2 V sh ~V em ~ 500 km/s n em ~ 10 3 cm -3 2 Impulsive acceleration Emission Line Cloud F j ~ αG em / t age Our analysis FjFj G em ~ ΣM V Gradual acceleration
55
Comparison : Ours is a kinder, gentler jet. Maybe more plausible ? Jet Property Our Jet Bicknell et al Energy flux Energy flux : L j x 1 x 1000 Momentum flux F j x 1 x 100 Velocity : V j 300 – 3000 km/s (1 – few V em ) 15 – 90 x 10 3 km/s (0.05c – 0.3c) Density : n j 0.1 – 5 cm -3 Ram pressure : P j x 1 x 100 Cloud shock : V sh 10 – 50 km/s 500 – 1000 km/s Temperature : T j ~ 10 6 K ~ 10 9 K Mach No. : M j 2 – 51 – few
56
Summary 1.Jet-gas interactions (JGI) are important 2.VLA & HST data on Seyfert with dominant JGI 3.Inspection reveals likely JGI scenario –3 regions suggest temporal development 4.Ionization study rejects role of shocks –AGN photoionization of thick & thin components 5.Data provide information on jet properties : – relatively low power, low speed, transonic, dense jet – dominated by thermal gas, at T j ~ 0.5 x T(V j ) – ram pressure ~ 2-10 x internal pressure 6.Overall context : thermal jet/wind driven ablata
57
New HST Project : 1 or 2 slits on six other objects with evidence for JGI.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.