Download presentation
Presentation is loading. Please wait.
Published byPercival Daniels Modified over 9 years ago
1
ME 381R Fall 2003 Micro-Nano Scale Thermal-Fluid Science and Technology Lecture 11: Thermal Property Measurement Techniques For Thin Films and Nanostructures Dr. Li Shi Department of Mechanical Engineering The University of Texas at Austin Austin, TX 78712
2
Outline Thermal Property Measurements: Thin films
Nanowires and Nanotubes Reading: Ch2 in Tien et al
3
Thin Film Thermal Conductivity Measurement
The 3w method Cahill, Rev. Sci. Instrum. 61, 802 (1990) Metal line Thin Film L 2b V I ~ 1w T ~ I2 ~ 2w R ~ T ~ 2w V~ IR ~3w I0 sin(wt) Substrate Substrate contribution Film contribution
4
Data Analysis Dotted line - Ts+ Tf Solid line - Ts
Slope of solid line ks Tf kf
5
Thermal Conductivity of Thin Si Films
(M.Asheghi,etc.,1997) Size effect on the conductivity can exceed two orders of magnitude for layers of thickness near 1 m at T<10k.
6
Silicon on Insulator (SOI)
Ju and Goodson, APL 74, 3005 IBM SOI Chip Lines: BTE results Hot spots!
7
Thin Film Superlattices
SiGe superlattice (Shakouri, UCSC) Increased phonon-boundary scattering decreased k + other size effects High thermoelectric figure of merit (ZT = S2sT/k) Si Barrier Ge Quantum well (QW)
8
Thermal Conductivity of Si/Ge Superlattices
k (W/m-K) Bulk Si0.5Ge0.5 Alloy Circles: Measurement by D. Cahill’s group Lines: BTE / EPRT results by G. Chen Period Thickness (Å)
9
Anisotropic Polymer Thin Films
Ju, Kurabayashi, Goodson, Thin Solid Films 339, 160 (1999) By comparing temperature rise of the metal line for different line width, the anisotropic thermal conductivity can be deduced
10
Nanowires Si Nanowires for Electronic Applications
Bi Nanowires for TE Cooling (Dresselhaus et al., MIT) Top View Al2O3 template Boundary scattering + modified phonon dispersion (group velocity): Suppressed thermal conductivity Volz and Chen, Appl. Phys. Lett. 75, 2065 (1999)
11
The 3w method for Nanowires
-- Lu, Yi, Zhang, Rev. Sci. Instrum. 72, 2996 (2001) Low frequency: V(3w) ~ 1/k High frequency: V(3w) ~ 1/C Tested for a 20 mm dia. Pt wire V I0 sin(wt) Electrode Wire Substrate Conditions: The sample needs to have a large temperature coefficient of resistance TCR= (dR/dT)/R The electrical contact has to be perfect
12
Thermal Measurements of Nanotubes and Nanowires
Themal conductance: G = Q / (Th-Ts) Suspended SiNx membrane Long SiNx beams I Q Pt resistance thermometer Kim et al, PRL 87, Shi et al, JHT, in press
13
Device Fabrication (c) Lithography Photoresist (a) CVD SiNx SiO2
(d) RIE etch (b) Pt lift-off Pt (e) HF etch
14
Nanowires p 22 nm diameter Si nanowire, P. Yang, Berkeley
Increased phonon-boundary scattering Modified phonon dispersion Suppressed thermal conductivity Ref: Chen and Shakouri, J. Heat Transfer 124, 242 Hot p Cold
15
(Berkeley Device group)
Si Nanowires Si Nanotransistor (Berkeley Device group) Gate Source Drain Nanowire Channel D. Li et al., APL Symbols: Measurements Lines: Modified Callaway Method Hot Spots in Si nanotransistors!
16
Nanotube Nanoelectronics
TubeFET (McEuen et al., Berkeley) Nanotube Logic (Avouris et al., IBM)
17
Thermal Transport in Carbon Nanotubes
Hot p Cold Few scattering: long mean free path l Strong SP2 bonding: high sound velocity v high thermal conductivity: k = Cvl/3 ~ 6000 W/m-K Heat capacity
18
Thermal Conductivity of Carbon Nanotubes
CVD SWCN CNT An individual nanotube has a high k ~ W/m-K at 300 K k of a CN bundle is reduced by thermal resistance at tube-tube junctions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.