Presentation is loading. Please wait.

Presentation is loading. Please wait.

11.4 – Multiplying & Dividing Rational Functions.

Similar presentations


Presentation on theme: "11.4 – Multiplying & Dividing Rational Functions."— Presentation transcript:

1 11.4 – Multiplying & Dividing Rational Functions

2 Ex. 1 Find each product. a. 10y 3 z 2. 12w 2 x 2 6wx 3 25y 2 z 4

3 Ex. 1 Find each product. a. 10y 3 z 2. 12w 2 x 2 6wx 3 25y 2 z 4 10y 3 z 2 · 12w 2 x 2

4 Ex. 1 Find each product. a. 10y 3 z 2. 12w 2 x 2 6wx 3 25y 2 z 4 10y 3 z 2 · 12w 2 x 2 6wx 3 · 25y 2 z 4

5 Ex. 1 Find each product. a. 10y 3 z 2. 12w 2 x 2 6wx 3 25y 2 z 4 10y 3 z 2 · 12w 2 x 2 6wx 3 · 25y 2 z 4 2 · 5 · y · y · y · z · z

6 Ex. 1 Find each product. a. 10y 3 z 2. 12w 2 x 2 6wx 3 25y 2 z 4 10y 3 z 2 · 12w 2 x 2 6wx 3 · 25y 2 z 4 2 · 5 · y · y · y · z · z · 2 · 6 · w · w · x · x

7 Ex. 1 Find each product. a. 10y 3 z 2. 12w 2 x 2 6wx 3 25y 2 z 4 10y 3 z 2 · 12w 2 x 2 6wx 3 · 25y 2 z 4 2 · 5 · y · y · y · z · z · 2 · 6 · w · w · x · x 3 · 2 · w · x · x · x

8 Ex. 1 Find each product. a. 10y 3 z 2. 12w 2 x 2 6wx 3 25y 2 z 4 10y 3 z 2 · 12w 2 x 2 6wx 3 · 25y 2 z 4 2 · 5 · y · y · y · z · z · 2 · 6 · w · w · x · x 3 · 2 · w · x · x · x · 5 · 5 · y · y · z · z · z · z

9 Ex. 1 Find each product. a. 10y 3 z 2. 12w 2 x 2 6wx 3 25y 2 z 4 10y 3 z 2 · 12w 2 x 2 6wx 3 · 25y 2 z 4 2 · 5 · y · y · y · z · z · 2 · 6 · w · w · x · x 3 · 2 · w · x · x · x · 5 · 5 · y · y · z · z · z · z

10 Ex. 1 Find each product. a. 10y 3 z 2. 12w 2 x 2 6wx 3 25y 2 z 4 10y 3 z 2 · 12w 2 x 2 6wx 3 · 25y 2 z 4 2 · 5 · y · y · y · z · z · 2 · 6 · w · w · x · x 3 · 2 · w · x · x · x · 5 · 5 · y · y · z · z · z · z 2

11 Ex. 1 Find each product. a. 10y 3 z 2. 12w 2 x 2 6wx 3 25y 2 z 4 10y 3 z 2 · 12w 2 x 2 6wx 3 · 25y 2 z 4 2 · 5 · y · y · y · z · z · 2 · 6 · w · w · x · x 3 · 2 · w · x · x · x · 5 · 5 · y · y · z · z · z · z 2

12 Ex. 1 Find each product. a. 10y 3 z 2. 12w 2 x 2 6wx 3 25y 2 z 4 10y 3 z 2 · 12w 2 x 2 6wx 3 · 25y 2 z 4 2 · 5 · y · y · y · z · z · 2 · 6 · w · w · x · x 3 · 2 · w · x · x · x · 5 · 5 · y · y · z · z · z · z 4wy 5xz 2 2

13 b. x 2 – x – 20. x 2 + 13x + 22 x 2 + 20x + 99 x 2 + 6x + 8

14 b. x 2 – x – 20. x 2 + 13x + 22 x 2 + 20x + 99 x 2 + 6x + 8 (x – 5)(x + 4)

15 b. x 2 – x – 20. x 2 + 13x + 22 x 2 + 20x + 99 x 2 + 6x + 8 (x – 5)(x + 4) (x + 9)(x + 11)

16 b. x 2 – x – 20. x 2 + 13x + 22 x 2 + 20x + 99 x 2 + 6x + 8 (x – 5)(x + 4). (x + 11)(x + 2) (x + 9)(x + 11)

17 b. x 2 – x – 20. x 2 + 13x + 22 x 2 + 20x + 99 x 2 + 6x + 8 (x – 5)(x + 4). (x + 11)(x + 2) (x + 9)(x + 11) (x + 2)(x + 4)

18 b. x 2 – x – 20. x 2 + 13x + 22 x 2 + 20x + 99 x 2 + 6x + 8 (x – 5)(x + 4) (x + 11)(x + 2) (x + 9)(x + 11) (x + 2)(x + 4) (x – 5)(x + 4)(x + 11)(x + 2) (x + 9)(x + 11)(x + 2)(x + 4).

19 b. x 2 – x – 20. x 2 + 13x + 22 x 2 + 20x + 99 x 2 + 6x + 8 (x – 5)(x + 4) (x + 11)(x + 2) (x + 9)(x + 11) (x + 2)(x + 4) (x – 5)(x + 4)(x + 11)(x + 2) (x + 9)(x + 11)(x + 2)(x + 4).

20 b. x 2 – x – 20. x 2 + 13x + 22 x 2 + 20x + 99 x 2 + 6x + 8 (x – 5)(x + 4) (x + 11)(x + 2) (x + 9)(x + 11) (x + 2)(x + 4) (x – 5)(x + 4)(x + 11)(x + 2) (x + 9)(x + 11)(x + 2)(x + 4).

21 b. x 2 – x – 20. x 2 + 13x + 22 x 2 + 20x + 99 x 2 + 6x + 8 (x – 5)(x + 4) (x + 11)(x + 2) (x + 9)(x + 11) (x + 2)(x + 4) (x – 5)(x + 4)(x + 11)(x + 2) (x + 9)(x + 11)(x + 2)(x + 4) x – 5 x + 9.

22 Ex. 2 Find the product. 2.54 centimeters. 12 inches. 3 feet 1 inch 1 foot 1 yard

23 Ex. 2 Find the product. 2.54 centimeters. 12 inches. 3 feet 1 inch 1 foot 1 yard (2.54 centimeters)(12 inches)(3 feet)

24 Ex. 2 Find the product. 2.54 centimeters. 12 inches. 3 feet 1 inch 1 foot 1 yard (2.54 centimeters)(12 inches)(3 feet) (1 inch)(1 foot)(1 yard)

25 Ex. 2 Find the product. 2.54 centimeters. 12 inches. 3 feet 1 inch 1 foot 1 yard (2.54 centimeters)(12 inches)(3 feet) (1 inch)(1 foot)(1 yard)

26 Ex. 2 Find the product. 2.54 centimeters. 12 inches. 3 feet 1 inch 1 foot 1 yard (2.54 centimeters)(12 inches)(3 feet) (1 inch)(1 foot)(1 yard) (2.54cm.)(12)(3) 1 yd.

27 Ex. 2 Find the product. 2.54 centimeters. 12 inches. 3 feet 1 inch 1 foot 1 yard (2.54 centimeters)(12 inches)(3 feet) (1 inch)(1 foot)(1 yard) (2.54cm.)(12)(3) = 91.44cm. 1 yd. 1 yd.

28 Ex. 2 Find the product. 2.54 centimeters. 12 inches. 3 feet 1 inch 1 foot 1 yard (2.54 centimeters)(12 inches)(3 feet) (1 inch)(1 foot)(1 yard) (2.54cm.)(12)(3) = 91.44cm. = 91.44cm/yd 1 yd. 1 yd.

29 Ex. 3 How many inches are in a mile?

30 Ex. 3 How many inches are in a mile? Note: 5280 feet = 1 mile

31 Ex. 3 How many inches are in a mile? Note: 5280 feet = 1 mile 5280 feet 1 mile

32 Ex. 3 How many inches are in a mile? Note: 5280 feet = 1 mile 5280 feet 1 mile

33 Ex. 3 How many inches are in a mile? Note: 5280 feet = 1 mile 5280 feet · = inches 1 mile

34 Ex. 3 How many inches are in a mile? Note: 5280 feet = 1 mile 5280 feet · 12 inches 1 mile 1 foot

35 Ex. 3 How many inches are in a mile? Note: 5280 feet = 1 mile 5280 feet · 12 inches 1 mile 1 foot

36 Ex. 3 How many inches are in a mile? Note: 5280 feet = 1 mile 5280 feet · 12 inches = 63,360 in/mi 1 mile 1 foot

37 Ex. Find each quotient. a. 16n 4 ÷ 12n 2 9p 2 3p 3

38 Ex. Find each quotient. a. 16n 4 ÷ 12n 2 9p 2 3p 3

39 Ex. Find each quotient. a. 16n 4 ÷ 12n 2 9p 2 3p 3 16n 4. 3p 3 9p 2 12n 2

40 Ex. Find each quotient. a. 16n 4 ÷ 12n 2 9p 2 3p 3 16n 4. 3p 3 9p 2 12n 2 2 · 2 · 2 · 2 · n · n · n · n

41 Ex. Find each quotient. a. 16n 4 ÷ 12n 2 9p 2 3p 3 16n 4. 3p 3 9p 2 12n 2 2 · 2 · 2 · 2 · n · n · n · n· 3 · p · p · p

42 Ex. Find each quotient. a. 16n 4 ÷ 12n 2 9p 2 3p 3 16n 4. 3p 3 9p 2 12n 2 2 · 2 · 2 · 2 · n · n · n · n· 3 · p · p · p 3 · 3 · p · p

43 Ex. Find each quotient. a. 16n 4 ÷ 12n 2 9p 2 3p 3 16n 4. 3p 3 9p 2 12n 2 2 · 2 · 2 · 2 · n · n · n · n· 3 · p · p · p 3 · 3 · p · p · 2 · 2 · 3 · n · n

44 Ex. Find each quotient. a. 16n 4 ÷ 12n 2 9p 2 3p 3 16n 4. 3p 3 9p 2 12n 2 2 · 2 · 2 · 2 · n · n · n · n· 3 · p · p · p 3 · 3 · p · p · 2 · 2 · 3 · n · n

45 Ex. Find each quotient. a. 16n 4 ÷ 12n 2 9p 2 3p 3 16n 4. 3p 3 9p 2 12n 2 2 · 2 · 2 · 2 · n · n · n · n· 3 · p · p · p 3 · 3 · p · p · 2 · 2 · 3 · n · n

46 Ex. Find each quotient. a. 16n 4 ÷ 12n 2 9p 2 3p 3 16n 4. 3p 3 9p 2 12n 2 2 · 2 · 2 · 2 · n · n · n · n· 3 · p · p · p 3 · 3 · p · p · 2 · 2 · 3 · n · n 4n 2 p 9

47 b. x 2 + x – 12 ÷ x + 2 x 2 – 9 x + 3

48 b. x 2 + x – 12 ÷ x + 2 x 2 – 9 x + 3

49 b. x 2 + x – 12 ÷ x + 2 x 2 – 9 x + 3 x 2 + x – 12. x + 3 x 2 – 9 x + 2

50 b. x 2 + x – 12 ÷ x + 2 x 2 – 9 x + 3 x 2 + x – 12. x + 3 x 2 – 9 x + 2

51 b. x 2 + x – 12 ÷ x + 2 x 2 – 9 x + 3 x 2 + x – 12. x + 3 x 2 – 9 x + 2 (x + 4)(x – 3)

52 b. x 2 + x – 12 ÷ x + 2 x 2 – 9 x + 3 x 2 + x – 12. x + 3 x 2 – 9 x + 2 (x + 4)(x – 3) (x + 3)(x – 3)

53 b. x 2 + x – 12 ÷ x + 2 x 2 – 9 x + 3 x 2 + x – 12. x + 3 x 2 – 9 x + 2 (x + 4)(x – 3). (x + 3) (x + 3)(x – 3) (x + 2)

54 b. x 2 + x – 12 ÷ x + 2 x 2 – 9 x + 3 x 2 + x – 12. x + 3 x 2 – 9 x + 2 (x + 4)(x – 3). (x + 3) (x + 3)(x – 3) (x + 2) (x + 4)(x – 3)(x + 3)

55 b. x 2 + x – 12 ÷ x + 2 x 2 – 9 x + 3 x 2 + x – 12. x + 3 x 2 – 9 x + 2 (x + 4)(x – 3). (x + 3) (x + 3)(x – 3) (x + 2) (x + 4)(x – 3)(x + 3) (x + 3)(x – 3)(x + 2)

56 b. x 2 + x – 12 ÷ x + 2 x 2 – 9 x + 3 x 2 + x – 12. x + 3 x 2 – 9 x + 2 (x + 4)(x – 3). (x + 3) (x + 3)(x – 3) (x + 2) (x + 4)(x – 3)(x + 3) (x + 3)(x – 3)(x + 2)

57 b. x 2 + x – 12 ÷ x + 2 x 2 – 9 x + 3 x 2 + x – 12. x + 3 x 2 – 9 x + 2 (x + 4)(x – 3). (x + 3) (x + 3)(x – 3) (x + 2) (x + 4)(x – 3)(x + 3) (x + 3)(x – 3)(x + 2)

58 b. x 2 + x – 12 ÷ x + 2 x 2 – 9 x + 3 x 2 + x – 12. x + 3 x 2 – 9 x + 2 (x + 4)(x – 3). (x + 3) (x + 3)(x – 3) (x + 2) (x + 4)(x – 3)(x + 3) (x + 3)(x – 3)(x + 2) x + 4 x + 2

59 c. ( x 2 + 6x – 16) ÷ (x – 2)

60 x 2 + 6x – 16

61 c. ( x 2 + 6x – 16) ÷ (x – 2) x 2 + 6x – 16 x – 2

62 c. ( x 2 + 6x – 16) ÷ (x – 2) x 2 + 6x – 16 x – 2 (x – 2)(x + 8) x – 2

63 c. ( x 2 + 6x – 16) ÷ (x – 2) x 2 + 6x – 16 x – 2 (x – 2)(x + 8) x – 2

64 c. ( x 2 + 6x – 16) ÷ (x – 2) x 2 + 6x – 16 x – 2 (x – 2)(x + 8) x – 2 x + 8


Download ppt "11.4 – Multiplying & Dividing Rational Functions."

Similar presentations


Ads by Google