Download presentation
Presentation is loading. Please wait.
Published byByron Holland Modified over 9 years ago
1
Pairwise sequence Alignment Homology, Score Matrix
2
Outline: pairwise alignment
Overview and examples Definitions: homologs, paralogs, orthologs Assigning scores to aligned amino acids: Dayhoff’s PAM matrices Alignment algorithms: Needleman-Wunsch, Smith-Waterman Statistical significance of pairwise alignments
3
Pairwise alignments in the 1950s
b-corticotropin (sheep) Corticotropin A (pig) ala gly glu asp asp glu asp gly ala glu asp glu CYIQNCPLG CYFQNCPRG Oxytocin Vasopressin
4
Pairwise sequence alignment is the most
fundamental operation of bioinformatics • It is used to decide if two proteins (or genes) are related structurally or functionally • It is used to identify domains or motifs that are shared between proteins It is the basis of BLAST searching • It is used in the analysis of genomes
6
Pairwise alignment: protein sequences can be more informative than DNA
• protein is more informative (20 vs 4 characters); many amino acids share related biophysical properties • codons are degenerate: changes in the third position often do not alter the amino acid that is specified DNA sequences can be translated into protein, and then used in pairwise alignments
7
Page 54
8
Pairwise alignment: protein sequences can be more informative than DNA
• DNA can be translated into six potential proteins 5’ CAT CAA 5’ ATC AAC 5’ TCA ACT 5’ CATCAACTACAACTCCAAAGACACCCTTACACATCAACAAACCTACCCAC 3’ 3’ GTAGTTGATGTTGAGGTTTCTGTGGGAATGTGTAGTTGTTTGGATGGGTG 5’ 5’ GTG GGT 5’ TGG GTA 5’ GGG TAG
9
Pairwise alignment: protein sequences can be more informative than DNA
Many times, DNA alignments are appropriate --to confirm the identity of a cDNA --to study noncoding regions of DNA --to study DNA polymorphisms --example: Neanderthal vs modern human DNA Query: 181 catcaactacaactccaaagacacccttacacccactaggatatcaacaaacctacccac 240 |||||||| |||| |||||| ||||| | ||||||||||||||||||||||||||||||| Sbjct: 189 catcaactgcaaccccaaagccacccct-cacccactaggatatcaacaaacctacccac 247
10
retinol-binding protein 4
(NP_006735) b-lactoglobulin (P02754) Page 42
11
Outline: pairwise alignment
Overview and examples Definitions: homologs, paralogs, orthologs Assigning scores to aligned amino acids: Dayhoff’s PAM matrices Alignment algorithms: Needleman-Wunsch, Smith-Waterman Statistical significance of pairwise alignments
12
Definitions Pairwise alignment The process of lining up two sequences
to achieve maximal levels of identity (and conservation, in the case of amino acid sequences) for the purpose of assessing the degree of similarity and the possibility of homology. wheat --DPNKPKRAMTSFVFFMSEFRSEFKQKHSKLKSIVEMVKAAGER | | |||||||| || | ||| ||| | |||| |||| ????? KKDSNAPKRAMTSFMFFSSDFRS----KHSDL-SIVEMSKAAGAA
13
Definitions Homology Similarity attributed to descent from a common ancestor. Page 42
14
Definitions Homology Identity
Similarity attributed to descent from a common ancestor. Identity The extent to which two (nucleotide or amino acid) sequences are invariant. RBP: RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVA 59 + K GTW++MA L + A glycodelin: 23 QTKQDLELPKLAGTWHSMAMA-TNNISLMATLKA 55 Page 44
15
Definitions: two types of homology
Orthologs Homologous sequences in different species that arose from a common ancestral gene during speciation; may or may not be responsible for a similar function. Paralogs Homologous sequences within a single species that arose by gene duplication. Page 43
16
Orthologs: members of a gene (protein) family in various organisms.
common carp Orthologs: members of a gene (protein) family in various organisms. This tree shows RBP orthologs. (during speciation) zebrafish rainbow trout teleost African clawed frog chicken human mouse horse rat pig cow rabbit 10 changes Page 43
17
Paralogs: members of a gene (protein) family within a Species.
(during duplication) apolipoprotein D retinol-binding protein 4 Complement component 8 Alpha-1 Microglobulin /bikunin prostaglandin D2 synthase progestagen- associated endometrial protein neutrophil gelatinase- associated lipocalin Odorant-binding protein 2A Lipocalin 1 10 changes Page 44
19
Pairwise alignment of retinol-binding protein 4
and b-lactoglobulin 1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | | | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin 51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin 98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV QYSC 136 RBP || || | :.|||| | | 94 IPAVFKIDALNENKVL VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin 137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI lactoglobulin Page 46
20
Definitions Similarity Identity Conservation
The extent to which nucleotide or protein sequences are related. It is based upon identity plus conservation. Identity The extent to which two sequences are invariant. Conservation Changes at a specific position of an amino acid or (less commonly, DNA) sequence that preserve the physico-chemical properties of the original residue.
21
Pairwise alignment of retinol-binding protein
and b-lactoglobulin 1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | | | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin 51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin 98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV QYSC 136 RBP || || | :.|||| | | 94 IPAVFKIDALNENKVL VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin 137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI lactoglobulin Identity (bar) Page 46
22
Pairwise alignment of retinol-binding protein
and b-lactoglobulin 1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | | | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin 51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin 98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV QYSC 136 RBP || || | :.|||| | | 94 IPAVFKIDALNENKVL VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin 137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI lactoglobulin Somewhat similar (one dot) Very similar (two dots) Page 46
23
Definitions Pairwise alignment The process of lining up two sequences
to achieve maximal levels of identity (and conservation, in the case of amino acid sequences) for the purpose of assessing the degree of similarity and the possibility of homology. Page 47
24
Pairwise alignment of retinol-binding protein
and b-lactoglobulin 1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | | | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin 51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin 98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV QYSC 136 RBP || || | :.|||| | | 94 IPAVFKIDALNENKVL VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin 137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI lactoglobulin Internal gap Terminal gap Page 46
25
Gaps • Positions at which a letter is paired with a null
are called gaps. • Gap scores are typically negative. • Since a single mutational event may cause the insertion or deletion of more than one residue, the presence of a gap is ascribed more significance than the length of the gap. •
26
Pairwise alignment of retinol-binding protein
and b-lactoglobulin 1 MKWVWALLLLAAWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDPEG 50 RBP . ||| | | | : .||||.:| : 1 ...MKCLLLALALTCGAQALIVT..QTMKGLDIQKVAGTWYSLAMAASD. 44 lactoglobulin 51 LFLQDNIVAEFSVDETGQMSATAKGRVR.LLNNWD..VCADMVGTFTDTE 97 RBP : | | | | :: | .| . || |: || |. 45 ISLLDAQSAPLRV.YVEELKPTPEGDLEILLQKWENGECAQKKIIAEKTK 93 lactoglobulin 98 DPAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAV QYSC 136 RBP || || | :.|||| | | 94 IPAVFKIDALNENKVL VLDTDYKKYLLFCMENSAEPEQSLAC 135 lactoglobulin 137 RLLNLDGTCADSYSFVFSRDPNGLPPEAQKIVRQRQ.EELCLARQYRLIV 185 RBP . | | | : || | || | 136 QCLVRTPEVDDEALEKFDKALKALPMHIRLSFNPTQLEEQCHI lactoglobulin
27
Pairwise alignment of retinol-binding protein
from human (top) and rainbow trout (O. mykiss) 1 .MKWVWALLLLA.AWAAAERDCRVSSFRVKENFDKARFSGTWYAMAKKDP 48 :: || || || .||.||. .| :|||:.|:.| |||.||||| 1 MLRICVALCALATCWA...QDCQVSNIQVMQNFDRSRYTGRWYAVAKKDP 47 49 EGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDVCADMVGTFTDTED 98 |||| ||:||:|||||.|.|.||| ||| :||||:.||.| ||| || | 48 VGLFLLDNVVAQFSVDESGKMTATAHGRVIILNNWEMCANMFGTFEDTPD 97 99 PAKFKMKYWGVASFLQKGNDDHWIVDTDYDTYAVQYSCRLLNLDGTCADS 148 ||||||:||| ||:|| ||||||::||||| ||: |||| ..||||| | 98 PAKFKMRYWGAASYLQTGNDDHWVIDTDYDNYAIHYSCREVDLDGTCLDG 147 149 YSFVFSRDPNGLPPEAQKIVRQRQEELCLARQYRLIVHNGYCDGRSERNLL 199 |||:||| | || || |||| :..|:| .|| : | |:|: 148 YSFIFSRHPTGLRPEDQKIVTDKKKEICFLGKYRRVGHTGFCESS
28
Pairwise sequence alignment allows us
to look back billions of years ago (BYA) Origin of life Earliest fossils Origin of eukaryotes Eukaryote/ archaea Fungi/animal Plant/animal insects 4 3 2 1 Page 48
29
Multiple sequence alignment of
glyceraldehyde 3-phosphate dehydrogenases fly GAKKVIISAP SAD.APM..F VCGVNLDAYK PDMKVVSNAS CTTNCLAPLA human GAKRVIISAP SAD.APM..F VMGVNHEKYD NSLKIISNAS CTTNCLAPLA plant GAKKVIISAP SAD.APM..F VVGVNEHTYQ PNMDIVSNAS CTTNCLAPLA bacterium GAKKVVMTGP SKDNTPM..F VKGANFDKY. AGQDIVSNAS CTTNCLAPLA yeast GAKKVVITAP SS.TAPM..F VMGVNEEKYT SDLKIVSNAS CTTNCLAPLA archaeon GADKVLISAP PKGDEPVKQL VYGVNHDEYD GE.DVVSNAS CTTNSITPVA fly KVINDNFEIV EGLMTTVHAT TATQKTVDGP SGKLWRDGRG AAQNIIPAST human KVIHDNFGIV EGLMTTVHAI TATQKTVDGP SGKLWRDGRG ALQNIIPAST plant KVVHEEFGIL EGLMTTVHAT TATQKTVDGP SMKDWRGGRG ASQNIIPSST bacterium KVINDNFGII EGLMTTVHAT TATQKTVDGP SHKDWRGGRG ASQNIIPSST yeast KVINDAFGIE EGLMTTVHSL TATQKTVDGP SHKDWRGGRT ASGNIIPSST archaeon KVLDEEFGIN AGQLTTVHAY TGSQNLMDGP NGKP.RRRRA AAENIIPTST fly GAAKAVGKVI PALNGKLTGM AFRVPTPNVS VVDLTVRLGK GASYDEIKAK human GAAKAVGKVI PELNGKLTGM AFRVPTANVS VVDLTCRLEK PAKYDDIKKV plant GAAKAVGKVL PELNGKLTGM AFRVPTSNVS VVDLTCRLEK GASYEDVKAA bacterium GAAKAVGKVL PELNGKLTGM AFRVPTPNVS VVDLTVRLEK AATYEQIKAA yeast GAAKAVGKVL PELQGKLTGM AFRVPTVDVS VVDLTVKLNK ETTYDEIKKV archaeon GAAQAATEVL PELEGKLDGM AIRVPVPNGS ITEFVVDLDD DVTESDVNAA Page 49
30
Multiple sequence alignment of human lipocalin paralogs
~~~~~EIQDVSGTWYAMTVDREFPEMNLESVTPMTLTTL.GGNLEAKVTM lipocalin 1 LSFTLEEEDITGTWYAMVVDKDFPEDRRRKVSPVKVTALGGGNLEATFTF odorant-binding protein 2a TKQDLELPKLAGTWHSMAMATNNISLMATLKAPLRVHITSEDNLEIVLHR progestagen-assoc. endo. VQENFDVNKYLGRWYEIEKIPTTFENGRCIQANYSLMENGNQELRADGTV apolipoprotein D VKENFDKARFSGTWYAMAKDPEGLFLQDNIVAEFSVDETGNWDVCADGTF retinol-binding protein LQQNFQDNQFQGKWYVVGLAGNAI.LREDKDPQKMYATIDKSYNVTSVLF neutrophil gelatinase-ass. VQPNFQQDKFLGRWFSAGLASNSSWLREKKAALSMCKSVDGGLNLTSTFL prostaglandin D2 synthase VQENFNISRIYGKWYNLAIGSTCPWMDRMTVSTLVLGEGEAEISMTSTRW alpha-1-microglobulin PKANFDAQQFAGTWLLVAVGSACRFLQRAEATTLHVAPQGSTFRKLD complement component 8 Page 49
31
Outline: pairwise alignment
Overview and examples Definitions: homologs, paralogs, orthologs Assigning scores to aligned amino acids: Dayhoff’s PAM matrices Alignment algorithms: Needleman-Wunsch, Smith-Waterman Statistical significance of pairwise alignments
32
General approach to pairwise alignment
Choose two sequences Select an algorithm that generates a score Allow gaps (insertions, deletions) Score reflects degree of similarity Alignments can be global or local Estimate probability that the alignment occurred by chance
33
Calculation of an alignment score
Source:
34
lys found at 58% of arg sites
Emile Zuckerkandl and Linus Pauling (1965) considered substitution frequencies in 18 globins (myoglobins and hemoglobins from human to lamprey). Black: identity Gray: very conservative substitutions (>40% occurrence) White: fairly conservative substitutions (>21% occurrence) Red: no substitutions observed Page 80
35
Page 80
36
Dayhoff’s 34 protein superfamilies
Protein PAMs per 100 million years Ig kappa chain 37 Kappa casein 33 luteinizing hormone b 30 lactalbumin complement component epidermal growth factor 26 proopiomelanocortin 21 pancreatic ribonuclease 21 haptoglobin alpha 20 serum albumin 19 phospholipase A2, group IB 19 prolactin carbonic anhydrase C 16 Hemoglobin a 12 Hemoglobin b 12 Page 50
37
Dayhoff’s 34 protein superfamilies
Protein PAMs per 100 million years Ig kappa chain 37 Kappa casein 33 luteinizing hormone b 30 lactalbumin complement component epidermal growth factor 26 proopiomelanocortin 21 pancreatic ribonuclease 21 haptoglobin alpha 20 serum albumin 19 phospholipase A2, group IB 19 prolactin carbonic anhydrase C 16 Hemoglobin a 12 Hemoglobin b 12 human (NP_005203) versus mouse (NP_031812)
38
Dayhoff’s 34 protein superfamilies
Protein PAMs per 100 million years apolipoprotein A-II lysozyme gastrin myoglobin nerve growth factor myelin basic protein thyroid stimulating hormone b 7.4 parathyroid hormone parvalbumin trypsin insulin calcitonin arginine vasopressin adenylate kinase Page 50
39
Dayhoff’s 34 protein superfamilies
Protein PAMs per 100 million years triosephosphate isomerase vasoactive intestinal peptide 2.6 glyceraldehyde phosph. dehydrogease 2.2 cytochrome c collagen troponin C, skeletal muscle 1.5 alpha crystallin B chain 1.5 glucagon glutamate dehydrogenase 0.9 histone H2B, member Q 0.9 ubiquitin 0 Page 50
40
Pairwise alignment of human (NP_005203)
versus mouse (NP_031812) ubiquitin
41
Accepted point mutations (PAMs): inferring amino acid substitutions between a protein and its ancestor Dayhoff et al. compared protein sequences with inferred ancestors, rather than with each other directly. Consider four globins (myoglobin, alpha, beta, delta globin). In a phylogenetic tree there are four existing sequences plus two inferred ancestral sequences (5, 6). (We will learn how to make trees later.) 5 1 6 2 3 4
42
Accepted point mutations (PAMs): inferring amino acid substitutions between a protein and its ancestor The tree is made from a multiple sequence alignment of the four globins. Consider a comparison of alpha globin to myoglobin, and to their common ancestor (node 6). A direct comparison suggests alanine changed to glycine. But an ancestral glutamate changed to ala or gly! Three additional examples are boxed. 5 1 6 2 3 4 beta MVHLTPEEKSAVTALWGKV delta MVHLTPEEKTAVNALWGKV alpha MV.LSPADKTNVKAAWGKV myoglobin .MGLSDGEWQLVLNVWGKV MVHLSPEEKTAVNALWGKV MVHLTPEEKTAVNALWGKV
43
Dayhoff’s numbers of “accepted point mutations”:
what amino acid substitutions occur in proteins? Dayhoff (1978) p.346. Page 52
44
Multiple sequence alignment of
glyceraldehyde 3-phosphate dehydrogenases fly GAKKVIISAP SAD.APM..F VCGVNLDAYK PDMKVVSNAS CTTNCLAPLA human GAKRVIISAP SAD.APM..F VMGVNHEKYD NSLKIISNAS CTTNCLAPLA plant GAKKVIISAP SAD.APM..F VVGVNEHTYQ PNMDIVSNAS CTTNCLAPLA bacterium GAKKVVMTGP SKDNTPM..F VKGANFDKY. AGQDIVSNAS CTTNCLAPLA yeast GAKKVVITAP SS.TAPM..F VMGVNEEKYT SDLKIVSNAS CTTNCLAPLA archaeon GADKVLISAP PKGDEPVKQL VYGVNHDEYD GE.DVVSNAS CTTNSITPVA fly KVINDNFEIV EGLMTTVHAT TATQKTVDGP SGKLWRDGRG AAQNIIPAST human KVIHDNFGIV EGLMTTVHAI TATQKTVDGP SGKLWRDGRG ALQNIIPAST plant KVVHEEFGIL EGLMTTVHAT TATQKTVDGP SMKDWRGGRG ASQNIIPSST bacterium KVINDNFGII EGLMTTVHAT TATQKTVDGP SHKDWRGGRG ASQNIIPSST yeast KVINDAFGIE EGLMTTVHSL TATQKTVDGP SHKDWRGGRT ASGNIIPSST archaeon KVLDEEFGIN AGQLTTVHAY TGSQNLMDGP NGKP.RRRRA AAENIIPTST fly GAAKAVGKVI PALNGKLTGM AFRVPTPNVS VVDLTVRLGK GASYDEIKAK human GAAKAVGKVI PELNGKLTGM AFRVPTANVS VVDLTCRLEK PAKYDDIKKV plant GAAKAVGKVL PELNGKLTGM AFRVPTSNVS VVDLTCRLEK GASYEDVKAA bacterium GAAKAVGKVL PELNGKLTGM AFRVPTPNVS VVDLTVRLEK AATYEQIKAA yeast GAAKAVGKVL PELQGKLTGM AFRVPTVDVS VVDLTVKLNK ETTYDEIKKV archaeon GAAQAATEVL PELEGKLDGM AIRVPVPNGS ITEFVVDLDD DVTESDVNAA
45
The relative mutability of amino acids
Dayhoff et al. described the “relative mutability” of each amino acid as the probability that amino acid will change over a small evolutionary time period. The total number of changes are counted (on all branches of all protein trees considered), and the total number of occurrences of each amino acid is also considered. A ratio is determined. Relative mutability [changes] / [occurrences] Example: sequence 1 ala his val ala sequence 2 ala arg ser val For ala, relative mutability = [1] / [3] = 0.33 For val, relative mutability = [2] / [2] = 1.0 Page 53
46
The relative mutability of amino acids
Asn His 66 Ser Arg 65 Asp Lys 56 Glu Pro 56 Ala Gly 49 Thr 97 Tyr 41 Ile 96 Phe 41 Met 94 Leu 40 Gln 93 Cys 20 Val 74 Trp 18 Page 53
47
The relative mutability of amino acids
Asn His 66 Ser Arg 65 Asp Lys 56 Glu Pro 56 Ala Gly 49 Thr 97 Tyr 41 Ile 96 Phe 41 Met 94 Leu 40 Gln 93 Cys 20 Val 74 Trp 18 Note that alanine is normalized to a value of 100. Trp and cys are least mutable. Asn and ser are most mutable. Page 53
48
Normalized frequencies of amino acids
Gly 8.9% Arg 4.1% Ala 8.7% Asn 4.0% Leu 8.5% Phe 4.0% Lys 8.1% Gln 3.8% Ser 7.0% Ile 3.7% Val 6.5% His 3.4% Thr 5.8% Cys 3.3% Pro 5.1% Tyr 3.0% Glu 5.0% Met 1.5% Asp 4.7% Trp 1.0% blue=6 codons; red=1 codon These frequencies fi sum to 1 Page 53
49
Page 54
50
Dayhoff’s numbers of “accepted point mutations”:
what amino acid substitutions occur in proteins? Page 52
51
Dayhoff’s mutation probability matrix
for the evolutionary distance of 1 PAM We have considered three kinds of information: a table of number of accepted point mutations (PAMs) relative mutabilities of the amino acids normalized frequencies of the amino acids in PAM data This information can be combined into a “mutation probability matrix” in which each element Mij gives the probability that the amino acid in column j will be replaced by the amino acid in row i after a given evolutionary interval (e.g. 1 PAM). Page 50
52
Dayhoff’s PAM1 mutation probability matrix
Original amino acid Page 55
53
Dayhoff’s PAM1 mutation probability matrix
Each element of the matrix shows the probability that an original amino acid (top) will be replaced by another amino acid (side)
54
Substitution Matrix A substitution matrix contains values proportional
to the probability that amino acid i mutates into amino acid j for all pairs of amino acids. Substitution matrices are constructed by assembling a large and diverse sample of verified pairwise alignments (or multiple sequence alignments) of amino acids. Substitution matrices should reflect the true probabilities of mutations occurring through a period of evolution. The two major types of substitution matrices are PAM and BLOSUM.
55
Point-accepted mutations
PAM matrices: Point-accepted mutations PAM matrices are based on global alignments of closely related proteins. The PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence. At an evolutionary interval of PAM1, one change has occurred over a length of 100 amino acids. Other PAM matrices are extrapolated from PAM1. For PAM250, 250 changes have occurred for two proteins over a length of 100 amino acids. All the PAM data come from closely related proteins (>85% amino acid identity).
56
Dayhoff’s PAM1 mutation probability matrix
Page 55
57
Dayhoff’s PAM0 mutation probability matrix:
the rules for extremely slowly evolving proteins Top: original amino acid Side: replacement amino acid Page 56
58
Dayhoff’s PAM2000 mutation probability matrix:
the rules for very distantly related proteins PAM A Ala R Arg N Asn D Asp C Cys Q Gln E Glu G Gly 8.7% 4.1% N 4.0% D 4.7% C 3.3% Q 3.8% E 5.0% G 8.9% 8.9% 8.9% 8.9% 8.9% 8.9% 8.9% 8.9% Top: original amino acid Side: replacement amino acid Page 56
59
PAM250 mutation probability matrix
Top: original amino acid Side: replacement amino acid Page 57
60
PAM250 log odds scoring matrix Page 58
61
Why do we go from a mutation probability matrix to a log odds matrix?
We want a scoring matrix so that when we do a pairwise alignment (or a BLAST search) we know what score to assign to two aligned amino acid residues. Logarithms are easier to use for a scoring system. They allow us to sum the scores of aligned residues (rather than having to multiply them). Page 57
62
How do we go from a mutation probability matrix to a log odds matrix?
The cells in a log odds matrix consist of an “odds ratio”: the probability that an alignment is authentic the probability that the alignment was random The score S for an alignment of residues a,b is given by: S(a,b) = 10 log10 (Mab/pb) As an example, for tryptophan, S(a,tryptophan) = 10 log10 (0.55/0.010) = 17.4 Page 57
63
What do the numbers mean
in a log odds matrix? S(a,tryptophan) = 10 log10 (0.55/0.010) = 17.4 A score of +17 for tryptophan means that this alignment is 50 times more likely than a chance alignment of two Trp residues. S(a,b) = 17 Probability of replacement (Mab/pb) = x Then 17 = 10 log10 x 1.7 = log10 x 101.7 = x = 50 Page 58
64
What do the numbers mean
in a log odds matrix? A score of +2 indicates that the amino acid replacement occurs 1.6 times as frequently as expected by chance. A score of 0 is neutral. A score of –10 indicates that the correspondence of two amino acids in an alignment that accurately represents homology (evolutionary descent) is one tenth as frequent as the chance alignment of these amino acids. Page 58
65
PAM250 log odds scoring matrix Page 58
66
PAM10 log odds scoring matrix Page 59
67
More conserved Less conserved Rat versus mouse RBP Rat versus bacterial lipocalin
68
Comparing two proteins with a PAM1 matrix
gives completely different results than PAM250! Consider two distantly related proteins. A PAM40 matrix is not forgiving of mismatches, and penalizes them severely. Using this matrix you can find almost no match. hsrbp, 136 CRLLNLDGTC btlact, 3 CLLLALALTC * ** * ** A PAM250 matrix is very tolerant of mismatches. 24.7% identity in 81 residues overlap; Score: 77.0; Gap frequency: 3.7% rbp4 26 RVKENFDKARFSGTWYAMAKKDPEGLFLQDNIVAEFSVDETGQMSATAKGRVRLLNNWDV btlact 21 QTMKGLDIQKVAGTWYSLAMAASD-ISLLDAQSAPLRVYVEELKPTPEGDLEILLQKWEN * **** * * * * ** * rbp CADMVGTFTDTEDPAKFKM btlact 80 GECAQKKIIAEKTKIPAVFKI ** * ** ** Page 60
69
BLOSUM Matrices BLOSUM matrices are based on local alignments.
BLOSUM stands for blocks substitution matrix. BLOSUM62 is a matrix calculated from comparisons of sequences with no less than 62% divergence. Page 60
70
BLOSUM Matrices 100 collapse Percent amino acid identity 62 30
71
BLOSUM Matrices 100 100 100 collapse collapse 62 62 62 collapse
Percent amino acid identity 30 30 30 BLOSUM80 BLOSUM62 BLOSUM30
72
BLOSUM Matrices All BLOSUM matrices are based on observed alignments;
they are not extrapolated from comparisons of closely related proteins. The BLOCKS database contains thousands of groups of multiple sequence alignments. BLOSUM62 is the default matrix in BLAST 2.0. Though it is tailored for comparisons of moderately distant proteins, it performs well in detecting closer relationships. A search for distant relatives may be more sensitive with a different matrix. Page 60
73
Blosum62 scoring matrix Page 61
74
Blosum62 scoring matrix Page 61
75
Rat versus mouse RBP Rat versus bacterial lipocalin Page 61
76
Point-accepted mutations
PAM matrices: Point-accepted mutations PAM matrices are based on global alignments of closely related proteins. The PAM1 is the matrix calculated from comparisons of sequences with no more than 1% divergence. At an evolutionary interval of PAM1, one change has occurred over a length of 100 amino acids. Other PAM matrices are extrapolated from PAM1. For PAM250, 250 changes have occurred for two proteins over a length of 100 amino acids.
77
Two randomly diverging protein sequences change
in a negatively exponential fashion Percent identity “twilight zone” Evolutionary distance in PAMs Page 62
78
At PAM1, two proteins are 99% identical
At PAM10.7, there are 10 differences per 100 residues At PAM80, there are 50 differences per 100 residues At PAM250, there are 80 differences per 100 residues Percent identity “twilight zone” Differences per 100 residues Page 62
79
PAM matrices reflect different degrees of divergence
80
PAM: “Accepted point mutation”
Two proteins with 50% identity may have 80 changes per 100 residues. (Why? Because any residue can be subject to back mutations.) Proteins with 20% to 25% identity are in the “twilight zone” and may be statistically significantly related. PAM or “accepted point mutation” refers to the “hits” or matches between two sequences (Dayhoff & Eck, 1968) Page 62
81
Ancestral sequence Sequence 1 ACCGATC Sequence 2 AATAATC ACCCTAC
A no change A C single substitution C --> A C multiple substitutions C --> A --> T C --> G coincidental substitutions C --> A T --> A parallel substitutions T --> A A --> C --> T convergent substitutions A --> T C back substitution C --> T --> C Sequence 1 ACCGATC Sequence 2 AATAATC Li (1997) p.70
82
Percent identity between two proteins: What percent is significant?
100% 80% 65% 30% 23% 19% We will see in the BLAST lecture that it is appropriate to describe significance in terms of probability (or expect) values. As a rule of thumb, two proteins sharing > 30% over a substantial region are usually homologous.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.