Download presentation
Presentation is loading. Please wait.
Published byCody Bell Modified over 9 years ago
1
Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013
2
My Research Random Number Generation : – C. R. S. Williams, J. C. Salevan, X. Li, R. Roy, and T. E. Murphy. “Fast physical random number generator using amplified spontaneous emission.” Optics Express, 18(23):23584-23597 (2010). Optoelectronic Oscillators and Synchronization : – T. E. Murphy, A. B. Cohen, B. Ravoori, K. R. B. Schmitt, A. V. Setty, F. Sorrentino, C. R. S. Williams, E. Ott, and R. Roy. “Complex dynamics and synchronization of delayed-feedback nonlinear oscillators.” Phil. Trans. R. Soc. A, 368(1911):343-366 (2010). – C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll, “Group Synchrony in an Experimental System of Delay-coupled Optoelectronic Oscillators,” Conference Proceedings of NOLTA2012, 70-73 (2012). – C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll. “Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators.” Phys. Rev. Lett., 110:064104 (2013). – C. R. S. Williams, F. Sorrentino, T. E. Murphy, and R. Roy. “Synchronization States and Multistability in a Ring of Periodic Oscillators: Experimentally Variable Coupling Delays.” Manuscript submitted.
3
Outline Introduction: Dynamical Systems and Synchronization Synchrony of periodic oscillators in a unidirectional ring Group synchrony of chaotic oscillators 3
4
Pendulum: The Simplest Dynamical System 4 For an ideal, small amplitude oscillation: Not so simple for large amplitudes or real pendulum! Image: Wikipedia.org
5
Weather: Example of Chaos 5 Lorenz System: Deterministic Sensitive to initial conditions R. C. Hilborn, Chaos and Nonlinear Dynamics. Image: Wikipedia.org
6
Synchronization of Periodic Oscillators 6 Metronome Synchronization (IkeguchiLab on YouTube)
7
Synchronization Example: Millennium Bridge Bridge-pedestrian coupling created pedestrian synchrony and bridge swaying! 7 S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt and E. Ott, Nature 438, 43-44 (2005).
8
Synchronization of Brain Signals 8 Image: Wikipedia.org
9
Experiment 9
10
Insert photo of experiment here Laser 10 Mach-Zehnder Modulator Digital Signal Processing (DSP) Board Photoreceivers and Voltage Amplifier
11
Experimental Diagram 11
12
Nonlinearity 12 V Transmission: P V Image: B. Ravoori
13
Single Node Block Diagram 13
14
Dynamics of a Single Node β 14 B. Ravoori, Ph.D. Dissertation, 2011. A. B. Cohen, Ph.D. Dissertation, 2011. T. E. Murphy, et al., PTRSA (2010).
15
Dynamics of a Single Node 15 B. Ravoori, Ph.D. Dissertation, 2011. A. B. Cohen, Ph.D. Dissertation, 2011. T. E. Murphy, A. B. Cohen, B. Ravoori, K. R. B. Schmitt, A. V. Setty, F. Sorrentino, C. R. S. Williams, E. Ott, PTRSA 368 (2010).
16
Four Node Network: Flexible Experiment
17
Synchronization Types Identical, isochronal PhaseLag (amplitude) 17
18
Phase Synchrony States Control of phase synchronization states in coupled oscillators is interesting because of neurological disorders and other phenomena observed in coupled neurons Interested in controlling synchronization in coupled oscillators from complete synchrony, cluster synchrony, and different types of lag synchrony, specifically ‘splay phase’ synchrony 18 C. R. S. Williams, F. Sorrentino, T. E. Murphy, and R. Roy, Manuscript submitted.
19
Coupled Periodic Oscillators
20
Coupled Neurons: Transitions from lag to isochronal synchrony Unidirectional Ring of Neurons 20 B. Adhikari, et al. Chaos 21, 023116 (2011). v is membrane potential h, m are membrane channel gating variables
21
Background In numerical and analytical studies, changing the coupling delay has produced different synchronization states 21 C. Choe, et al., PRE 81, 025205 (2010).
22
Experiment on Unidirectional Ring 22
23
Mathematical Model 23
24
Mathematical Model 24
25
Isochronal Synchrony (Phase = 0) Tuning Coupling Delay ExperimentSimulation 25
26
Splay-phase (Lag) Synchrony (Phase = π /2) Tuning Coupling Delay ExperimentSimulation 26
27
Cluster (Lag) Synchrony (Phase = π) Tuning Coupling Delay ExperimentSimulation 27
28
Splay-phase (Lag) Synchrony (Phase = 3 π/ 2 ) Tuning Coupling Delay ExperimentSimulation 28
29
Varying Coupling Delay Experiment 10 Measurements per delay Simulation 2000 Random initial conditions per delay Frequency of Occurrence (%) 29
30
Predicted Stability 30
31
Coupled Chaotic Oscillators
32
Groups of different oscillators Intra-group identical synchrony, but not inter- group This has been studied numerically and analytically, but previously not in an experiment Group Synchrony 32 Dahms, Lehnert, and Schöll, PRE 86, 016202 (2012) C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll, PRL 110, 064104 (2013)
33
Special case of group synchrony with identical nodes Cluster Synchrony 33
34
Motivation Neurons can display a variety of dynamical behaviors, and they are coupled to each other 34 J. Lapierre, et al., Journal of Neuroscience 27 (44), 2007.
35
Experimental Network Structure 35
36
Synchrony of Coupled Groups 36
37
Mathematical Model 37
38
Mathematical Model 38
39
Stability of Group Synchrony 39 C. R. S. Williams, et al., PRL 110 (2013).
40
Global Synchrony β (A) = β (B) = 3.3Simulation Experiment 40
41
Cluster Synchrony β (A) = β (B) = 7.6Simulation Experiment 41
42
Group Synchrony β (A) =7.6 β (B) = 3.3 Simulation Experiment 42
43
Dissimilar Nodes β (A) = 7.6β (B) = 3.3 43 Autocorrelation Function
44
Coupled Nodes 44 Cross-correlation Function
45
Group Synchrony and Time-lagged Phase Synchrony Group B Traces Delayed 45
46
Group Sync for Different Structures 46
47
Group Sync for Different Structures 47
48
Group Sync for Different Structures 48
49
Larger Networks 49
50
Conclusions I Shown transitions between isochronal, cluster, and splay-phase synchrony by varying coupling delays between periodic oscillators Have an experiment with tunable coupling delay Tested stability calculations and predictions with experiments and simulations 50
51
Conclusions II Experimental demonstration of global, cluster and group synchrony Stability calculations extended to group synchrony with time-delayed systems, used to correctly predict experimental results of this optoelectronic system, with coupled non- identical nodes Results can be generalized to groups of different sizes, and to different coupling configurations 51
52
Acknowledgements Thomas E. Murphy, Rajarshi Roy (University of Maryland) Francesco Sorrentino (Mechanical Engineering, University of New Mexico) Thomas Dahms, Eckehard Schöll (Tecnische Universität Berlin) MURI grant ONR N000140710734 (CRSW, TEM, RR) DFG in the framework of SFB 910 (TD, ES) Adam Cohen and Bhargava Ravoori Hien Dao and Aaron Hagerstrom 52
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.