Presentation is loading. Please wait.

Presentation is loading. Please wait.

Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013.

Similar presentations


Presentation on theme: "Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013."— Presentation transcript:

1 Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013

2 My Research Random Number Generation : – C. R. S. Williams, J. C. Salevan, X. Li, R. Roy, and T. E. Murphy. “Fast physical random number generator using amplified spontaneous emission.” Optics Express, 18(23):23584-23597 (2010). Optoelectronic Oscillators and Synchronization : – T. E. Murphy, A. B. Cohen, B. Ravoori, K. R. B. Schmitt, A. V. Setty, F. Sorrentino, C. R. S. Williams, E. Ott, and R. Roy. “Complex dynamics and synchronization of delayed-feedback nonlinear oscillators.” Phil. Trans. R. Soc. A, 368(1911):343-366 (2010). – C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll, “Group Synchrony in an Experimental System of Delay-coupled Optoelectronic Oscillators,” Conference Proceedings of NOLTA2012, 70-73 (2012). – C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll. “Experimental observations of group synchrony in a system of chaotic optoelectronic oscillators.” Phys. Rev. Lett., 110:064104 (2013). – C. R. S. Williams, F. Sorrentino, T. E. Murphy, and R. Roy. “Synchronization States and Multistability in a Ring of Periodic Oscillators: Experimentally Variable Coupling Delays.” Manuscript submitted.

3 Outline Introduction: Dynamical Systems and Synchronization Synchrony of periodic oscillators in a unidirectional ring Group synchrony of chaotic oscillators 3

4 Pendulum: The Simplest Dynamical System 4 For an ideal, small amplitude oscillation: Not so simple for large amplitudes or real pendulum! Image: Wikipedia.org

5 Weather: Example of Chaos 5 Lorenz System: Deterministic Sensitive to initial conditions R. C. Hilborn, Chaos and Nonlinear Dynamics. Image: Wikipedia.org

6 Synchronization of Periodic Oscillators 6 Metronome Synchronization (IkeguchiLab on YouTube)

7 Synchronization Example: Millennium Bridge Bridge-pedestrian coupling created pedestrian synchrony and bridge swaying! 7 S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt and E. Ott, Nature 438, 43-44 (2005).

8 Synchronization of Brain Signals 8 Image: Wikipedia.org

9 Experiment 9

10 Insert photo of experiment here Laser 10 Mach-Zehnder Modulator Digital Signal Processing (DSP) Board Photoreceivers and Voltage Amplifier

11 Experimental Diagram 11

12 Nonlinearity 12 V Transmission: P V Image: B. Ravoori

13 Single Node Block Diagram 13

14 Dynamics of a Single Node β 14 B. Ravoori, Ph.D. Dissertation, 2011. A. B. Cohen, Ph.D. Dissertation, 2011. T. E. Murphy, et al., PTRSA (2010).

15 Dynamics of a Single Node 15 B. Ravoori, Ph.D. Dissertation, 2011. A. B. Cohen, Ph.D. Dissertation, 2011. T. E. Murphy, A. B. Cohen, B. Ravoori, K. R. B. Schmitt, A. V. Setty, F. Sorrentino, C. R. S. Williams, E. Ott, PTRSA 368 (2010).

16 Four Node Network: Flexible Experiment

17 Synchronization Types Identical, isochronal PhaseLag (amplitude) 17

18 Phase Synchrony States Control of phase synchronization states in coupled oscillators is interesting because of neurological disorders and other phenomena observed in coupled neurons Interested in controlling synchronization in coupled oscillators from complete synchrony, cluster synchrony, and different types of lag synchrony, specifically ‘splay phase’ synchrony 18 C. R. S. Williams, F. Sorrentino, T. E. Murphy, and R. Roy, Manuscript submitted.

19 Coupled Periodic Oscillators

20 Coupled Neurons: Transitions from lag to isochronal synchrony Unidirectional Ring of Neurons 20 B. Adhikari, et al. Chaos 21, 023116 (2011). v is membrane potential h, m are membrane channel gating variables

21 Background In numerical and analytical studies, changing the coupling delay has produced different synchronization states 21 C. Choe, et al., PRE 81, 025205 (2010).

22 Experiment on Unidirectional Ring 22

23 Mathematical Model 23

24 Mathematical Model 24

25 Isochronal Synchrony (Phase = 0) Tuning Coupling Delay ExperimentSimulation 25

26 Splay-phase (Lag) Synchrony (Phase = π /2) Tuning Coupling Delay ExperimentSimulation 26

27 Cluster (Lag) Synchrony (Phase = π) Tuning Coupling Delay ExperimentSimulation 27

28 Splay-phase (Lag) Synchrony (Phase = 3 π/ 2 ) Tuning Coupling Delay ExperimentSimulation 28

29 Varying Coupling Delay Experiment 10 Measurements per delay Simulation 2000 Random initial conditions per delay Frequency of Occurrence (%) 29

30 Predicted Stability 30

31 Coupled Chaotic Oscillators

32 Groups of different oscillators Intra-group identical synchrony, but not inter- group This has been studied numerically and analytically, but previously not in an experiment Group Synchrony 32 Dahms, Lehnert, and Schöll, PRE 86, 016202 (2012) C. R. S. Williams, T. E. Murphy, R. Roy, F. Sorrentino, T. Dahms, and E. Schöll, PRL 110, 064104 (2013)

33 Special case of group synchrony with identical nodes Cluster Synchrony 33

34 Motivation Neurons can display a variety of dynamical behaviors, and they are coupled to each other 34 J. Lapierre, et al., Journal of Neuroscience 27 (44), 2007.

35 Experimental Network Structure 35

36 Synchrony of Coupled Groups 36

37 Mathematical Model 37

38 Mathematical Model 38

39 Stability of Group Synchrony 39 C. R. S. Williams, et al., PRL 110 (2013).

40 Global Synchrony β (A) = β (B) = 3.3Simulation Experiment 40

41 Cluster Synchrony β (A) = β (B) = 7.6Simulation Experiment 41

42 Group Synchrony β (A) =7.6 β (B) = 3.3 Simulation Experiment 42

43 Dissimilar Nodes β (A) = 7.6β (B) = 3.3 43 Autocorrelation Function

44 Coupled Nodes 44 Cross-correlation Function

45 Group Synchrony and Time-lagged Phase Synchrony Group B Traces Delayed 45

46 Group Sync for Different Structures 46

47 Group Sync for Different Structures 47

48 Group Sync for Different Structures 48

49 Larger Networks 49

50 Conclusions I Shown transitions between isochronal, cluster, and splay-phase synchrony by varying coupling delays between periodic oscillators Have an experiment with tunable coupling delay Tested stability calculations and predictions with experiments and simulations 50

51 Conclusions II Experimental demonstration of global, cluster and group synchrony Stability calculations extended to group synchrony with time-delayed systems, used to correctly predict experimental results of this optoelectronic system, with coupled non- identical nodes Results can be generalized to groups of different sizes, and to different coupling configurations 51

52 Acknowledgements Thomas E. Murphy, Rajarshi Roy (University of Maryland) Francesco Sorrentino (Mechanical Engineering, University of New Mexico) Thomas Dahms, Eckehard Schöll (Tecnische Universität Berlin) MURI grant ONR N000140710734 (CRSW, TEM, RR) DFG in the framework of SFB 910 (TD, ES) Adam Cohen and Bhargava Ravoori Hien Dao and Aaron Hagerstrom 52


Download ppt "Synchronization patterns in coupled optoelectronic oscillators Caitlin R. S. Williams University of Maryland Dissertation Defense Tuesday 13 August 2013."

Similar presentations


Ads by Google