Presentation is loading. Please wait.

Presentation is loading. Please wait.

Radiation and the Radiative Transfer Equation Lectures in Bertinoro 23 Aug – 2 Sep 2004 Paul Menzel NOAA/NESDIS/ORA.

Similar presentations


Presentation on theme: "Radiation and the Radiative Transfer Equation Lectures in Bertinoro 23 Aug – 2 Sep 2004 Paul Menzel NOAA/NESDIS/ORA."— Presentation transcript:

1 Radiation and the Radiative Transfer Equation Lectures in Bertinoro 23 Aug – 2 Sep 2004 Paul Menzel NOAA/NESDIS/ORA

2 Relevant Material in Applications of Meteorological Satellites CHAPTER 2 - NATURE OF RADIATION 2.1 Remote Sensing of Radiation2-1 2.2 Basic Units2-1 2.3 Definitions of Radiation 2-2 2.5Related Derivations2-5 CHAPTER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING 3.1Absorption and Emission3-1 3.2Conservation of Energy3-1 3.3Planetary Albedo3-2 3.4Selective Absorption and Emission3-2 3.7Summary of Interactions between Radiation and Matter3-6 3.8Beer's Law and Schwarzchild's Equation3-7 3.9 Atmospheric Scattering3-9 3.10 The Solar Spectrum3-11 3.11Composition of the Earth's Atmosphere3-11 3.12 Atmospheric Absorption and Emission of Solar Radiation3-11 3.13 Atmospheric Absorption and Emission of Thermal Radiation3-12 3.14 Atmospheric Absorption Bands in the IR Spectrum3-13 3.15 Atmospheric Absorption Bands in the Microwave Spectrum3-14 3.16 Remote Sensing Regions3-14 CHAPTER 5 - THE RADIATIVE TRANSFER EQUATION (RTE) 5.1 Derivation of RTE5-1 5.10Microwave Form of RTE5-28

3 All satellite remote sensing systems involve the measurement of electromagnetic radiation. Electromagnetic radiation has the properties of both waves and discrete particles, although the two are never manifest simultaneously. Electromagnetic radiation is usually quantified according to its wave-like properties; for many applications it considered to be a continuous train of sinusoidal shapes.

4 Remote sensing uses radiant energy that is reflected and emitted from Earth at various “wavelengths” of the electromagnetic spectrum Our eyes are sensitive to the visible portion of the EM spectrum The Electromagnetic Spectrum

5 Radiation is characterized by wavelength and amplitude a

6 Terminology of radiant energy

7 Definitions of Radiation __________________________________________________________________ QUANTITYSYMBOLUNITS __________________________________________________________________ EnergydQJoules FluxdQ/dtJoules/sec = Watts IrradiancedQ/dt/dAWatts/meter 2 MonochromaticdQ/dt/dA/d W/m 2 /micron Irradiance or dQ/dt/dA/d W/m 2 /cm -1 RadiancedQ/dt/dA/d /d  W/m 2 /micron/ster or dQ/dt/dA/d /d  W/m 2 /cm -1 /ster __________________________________________________________________

8 Radiation from the Sun The rate of energy transfer by electromagnetic radiation is called the radiant flux, which has units of energy per unit time. It is denoted by F = dQ / dt and is measured in joules per second or watts. For example, the radiant flux from the sun is about 3.90 x 10**26 W. The radiant flux per unit area is called the irradiance (or radiant flux density in some texts). It is denoted by E = dQ / dt / dA and is measured in watts per square metre. The irradiance of electromagnetic radiation passing through the outermost limits of the visible disk of the sun (which has an approximate radius of 7 x 10**8 m) is given by 3.90 x 10 26 E (sun sfc) = = 6.34 x 10 7 W m -2. 4  (7 x 10 8 ) 2

9 The solar irradiance arriving at the earth can be calculated by realizing that the flux is a constant, therefore E (earth sfc) x 4πR es 2 = E (sun sfc) x 4πR s 2, where R es is the mean earth to sun distance (roughly 1.5 x 10 11 m) and R s is the solar radius. This yields E (earth sfc) = 6.34 x 10 7 (7 x 10 8 / 1.5 x 10 11 ) 2 = 1380 W m -2. The irradiance per unit wavelength interval at wavelength λ is called the monochromatic irradiance, E λ = dQ / dt / dA / dλ, and has the units of watts per square metre per micrometer. With this definition, the irradiance is readily seen to be  E =  E λ dλ. o

10 In general, the irradiance upon an element of surface area may consist of contributions which come from an infinity of different directions. It is sometimes necessary to identify the part of the irradiance that is coming from directions within some specified infinitesimal arc of solid angle dΩ. The irradiance per unit solid angle is called the radiance, I = dQ / dt / dA / dλ / dΩ, and is expressed in watts per square metre per micrometer per steradian. This quantity is often also referred to as intensity and denoted by the letter B (when referring to the Planck function). If the zenith angle, θ, is the angle between the direction of the radiation and the normal to the surface, then the component of the radiance normal to the surface is then given by I cos θ. The irradiance represents the combined effects of the normal component of the radiation coming from the whole hemisphere; that is, E =  I cos θ dΩ where in spherical coordinates dΩ = sin θ dθ dφ. Ω Radiation whose radiance is independent of direction is called isotropic radiation. In this case, the integration over dΩ can be readily shown to be equal to π so that E =  I.

11 spherical coordinates and solid angle considerations

12 Radiation is governed by Planck’s Law c 2 / T B(,T) = c 1 /{ 5 [e -1] } Summing the Planck function at one temperature over all wavelengths yields the energy of the radiating source E =  B(, T) =  T 4 Brightness temperature is uniquely related to radiance for a given wavelength by the Planck function.

13 Using wavenumbers c 2 /T Planck’s Law B(,T) = c 1 3 / [e -1] (mW/m 2 /ster/cm -1 ) where = # wavelengths in one centimeter (cm-1) T = temperature of emitting surface (deg K) c 1 = 1.191044 x 10-5 (mW/m 2 /ster/cm -4 ) c 2 = 1.438769 (cm deg K) Wien's Law dB( max,T) / dT = 0 where (max) = 1.95T indicates peak of Planck function curve shifts to shorter wavelengths (greater wavenumbers) with temperature increase. Note B( max,T) ~ T**3.  Stefan-Boltzmann Law E =   B(,T) d =  T 4, where  = 5.67 x 10-8 W/m2/deg4. o states that irradiance of a black body (area under Planck curve) is proportional to T 4. Brightness Temperature c 1 3 T = c 2 /[ln( ______ + 1)] is determined by inverting Planck function B

14 Spectral Distribution of Energy Radiated from Blackbodies at Various Temperatures

15 B(,T) versus B(,T) B( max,T)~T 5 B( max,T)~T 3

16 Using wavenumbersUsing wavelengths c 2 /T c 2 / T B(,T) = c 1 3 / [e -1]B(,T) = c 1 /{ 5 [e -1] } (mW/m 2 /ster/cm -1 )(mW/m 2 /ster/  m) (max in cm-1) = 1.95T (max in cm)T = 0.2897 B( max,T) ~ T**3. B( max,T) ~ T**5.  E =   B(,T) d =  T 4, o c 1 3 c 1 T = c 2 /[ln( ______ + 1)] T = c 2 /[ ln( ______ + 1)] B 5 B

17 Normalized black body spectra representative of the sun (left) and earth (right), plotted on a logarithmic wavelength scale. The ordinate is multiplied by wavelength so that the area under the curves is proportional to irradiance.

18

19 Spectral Characteristics of Energy Sources and Sensing Systems

20 Temperature sensitivity, or the percentage change in radiance corresponding to a percentage change in temperature, , is defined as dB/B =  dT/T. The temperature sensivity indicates the power to which the Planck radiance depends on temperature, since B proportional to T  satisfies the equation. For infrared wavelengths,  = c 2 /T = c 2 / T. __________________________________________________________________ Wavenumber Typical Scene Temperature Temperature Sensitivity 700220 4.58 900300 4.32 1200300 5.76 1600240 9.59 230022015.04 250030011.99

21 Cloud edges and broken clouds appear different in 11 and 4 um images. T(11)**4=(1-N)*Tclr**4+N*Tcld**4~(1-N)*300**4+N*200**4 T(4)**12=(1-N)*Tclr**12+N*Tcld**12~(1-N)*300**12+N*200**12 Cold part of pixel has more influence for B(11) than B(4)

22

23 1.0 0.8 0.6 0.4 0.2 0.0 N T 300 280 260 240 220 BT4 BT11 BT SW and LW for different cloud amounts when Tcld=220 and Tsfc=300

24 Broken clouds appear different in 8.6, 11 and 12 um images; assume Tclr=300 and Tcld=230 T(11)-T(12)=[(1-N)*B11(Tclr)+N*B11(Tcld)] -1 - [(1-N)*B12(Tclr)+N*B12(Tcld)] -1 T(8.6)-T(11)=[(1-N)*B8.6(Tclr)+N*B8.6(Tcld)] -1 - [(1-N)*B11(Tclr)+N*B11(Tcld)] -1 Cold part of pixel has more influence at longer wavelengths 8.6-11 11-12 N=0 N=0.2 N=0.8 N=0.6 N=0.4 N=1.0

25 Relevant Material in Applications of Meteorological Satellites CHAPTER 2 - NATURE OF RADIATION 2.1 Remote Sensing of Radiation2-1 2.2 Basic Units2-1 2.3 Definitions of Radiation 2-2 2.5Related Derivations2-5 CHAPTER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING 3.1Absorption and Emission3-1 3.2Conservation of Energy3-1 3.3Planetary Albedo3-2 3.4Selective Absorption and Emission3-2 3.7Summary of Interactions between Radiation and Matter3-6 3.8Beer's Law and Schwarzchild's Equation3-7 3.9 Atmospheric Scattering3-9 3.10 The Solar Spectrum3-11 3.11Composition of the Earth's Atmosphere3-11 3.12 Atmospheric Absorption and Emission of Solar Radiation3-11 3.13 Atmospheric Absorption and Emission of Thermal Radiation3-12 3.14 Atmospheric Absorption Bands in the IR Spectrum3-13 3.15 Atmospheric Absorption Bands in the Microwave Spectrum3-14 3.16 Remote Sensing Regions3-14 CHAPTER 5 - THE RADIATIVE TRANSFER EQUATION (RTE) 5.1 Derivation of RTE5-1 5.10Microwave Form of RTE5-28 

26 Emission, Absorption, Reflection, and Scattering Blackbody radiation B represents the upper limit to the amount of radiation that a real substance may emit at a given temperature for a given wavelength. Emissivity  is defined as the fraction of emitted radiation R to Blackbody radiation,  = R /B. In a medium at thermal equilibrium, what is absorbed is emitted (what goes in comes out) so a = . Thus, materials which are strong absorbers at a given wavelength are also strong emitters at that wavelength; similarly weak absorbers are weak emitters. If a, r, and  represent the fractional absorption, reflectance, and transmittance, respectively, then conservation of energy says a + r +  = 1. For a blackbody a = 1, it follows that r = 0 and  = 0 for blackbody radiation. Also, for a perfect window  = 1, a = 0 and r = 0. For any opaque surface  = 0, so radiation is either absorbed or reflected a + r = 1. At any wavelength, strong reflectors are weak absorbers (i.e., snow at visible wavelengths), and weak reflectors are strong absorbers (i.e., asphalt at visible wavelengths).

27

28 Planetary Albedo Planetary albedo is defined as the fraction of the total incident solar irradiance, S, that is reflected back into space. Radiation balance then requires that the absorbed solar irradiance is given by E = (1 - A) S/4. The factor of one-fourth arises because the cross sectional area of the earth disc to solar radiation,  r 2, is one-fourth the earth radiating surface, 4  r 2. Thus recalling that S = 1380 Wm -2, if the earth albedo is 30 percent, then E = 241 Wm -2.

29 Selective Absorption and Transmission Assume that the earth behaves like a blackbody and that the atmosphere has an absorptivity a S for incoming solar radiation and a L for outgoing longwave radiation. Let Y a be the irradiance emitted by the atmosphere (both upward and downward); Y s the irradiance emitted from the earth's surface; and E the solar irradiance absorbed by the earth-atmosphere system. Then, radiative equilibrium requires E - (1-a L ) Y s - Y a = 0, at the top of the atmosphere, (1-a S ) E - Y s + Y a = 0, at the surface. Solving yields (2-a S ) Y s = E, and (2-a L ) (2-a L ) - (1-a L )(2-a S ) Y a = E. (2-a L ) Since a L > a S, the irradiance and hence the radiative equilibrium temperature at the earth surface is increased by the presence of the atmosphere. With a L =.8 and a S =.1 and E = 241 Wm -2, Stefans Law yields a blackbody temperature at the surface of 286 K, in contrast to the 255 K it would be if the atmospheric absorptance was independent of wavelength (a S = a L ). The atmospheric gray body temperature in this example turns out to be 245 K.

30  E  (1-a l ) Y s  Y a top of the atmosphere  (1-a s ) E  Y s  Y a earth surface. Incoming Outgoing IR solar (2-a S ) Y s = E =  T s 4 (2-a L )

31 Expanding on the previous example, let the atmosphere be represented by two layers and let us compute the vertical profile of radiative equilibrium temperature. For simplicity in our two layer atmosphere, let a S = 0 and a L = a =.5, u indicate upper layer, l indicate lower layer, and s denote the earth surface. Schematically we have:  E  (1-a) 2 Y s  (1-a)Y l  Y u top of the atmosphere  E  (1-a)Y s  Y l  Y u middle of the atmosphere  E  Y s  Y l  (1-a)Y u earth surface. Radiative equilibrium at each surface requires E =.25 Y s +.5 Y l + Y u, E =.5 Y s + Y l - Y u, E = Y s - Y l -.5 Y u. Solving yields Y s = 1.6 E, Y l =.5 E and Y u =.33 E. The radiative equilibrium temperatures (blackbody at the surface and gray body in the atmosphere) are readily computed. T s = [1.6E / σ] 1/4 = 287 K, T l = [0.5E / 0.5σ] 1/4 = 255 K, T u = [0.33E / 0.5σ] 1/4 = 231 K. Thus, a crude temperature profile emerges for this simple two-layer model of the atmosphere.

32 Transmittance Transmission through an absorbing medium for a given wavelength is governed by the number of intervening absorbing molecules (path length u) and their absorbing power (k ) at that wavelength. Beer’s law indicates that transmittance decays exponentially with increasing path length - k u (z)  (z   ) = e  where the path length is given by u (z) =   dz. z k u is a measure of the cumulative depletion that the beam of radiation has experienced as a result of its passage through the layer and is often called the optical depth . Realizing that the hydrostatic equation implies g  dz = - q dp where q is the mixing ratio and  is the density of the atmosphere, then p - k u (p) u (p) =  q g -1 dp and  (p  o ) = e. o

33 Spectral Characteristics of Atmospheric Transmission and Sensing Systems

34 Relative Effects of Radiative Processes

35

36 Scattering of early morning sun light from haze

37 Relevant Material in Applications of Meteorological Satellites CHAPTER 2 - NATURE OF RADIATION 2.1 Remote Sensing of Radiation2-1 2.2 Basic Units2-1 2.3 Definitions of Radiation 2-2 2.5Related Derivations2-5 CHAPTER 3 - ABSORPTION, EMISSION, REFLECTION, AND SCATTERING 3.1Absorption and Emission3-1 3.2Conservation of Energy3-1 3.3Planetary Albedo3-2 3.4Selective Absorption and Emission3-2 3.7Summary of Interactions between Radiation and Matter3-6 3.8Beer's Law and Schwarzchild's Equation3-7 3.9 Atmospheric Scattering3-9 3.10 The Solar Spectrum3-11 3.11Composition of the Earth's Atmosphere3-11 3.12 Atmospheric Absorption and Emission of Solar Radiation3-11 3.13 Atmospheric Absorption and Emission of Thermal Radiation3-12 3.14 Atmospheric Absorption Bands in the IR Spectrum3-13 3.15 Atmospheric Absorption Bands in the Microwave Spectrum3-14 3.16 Remote Sensing Regions3-14 CHAPTER 5 - THE RADIATIVE TRANSFER EQUATION (RTE) 5.1 Derivation of RTE5-1 5.10Microwave Form of RTE5-28 

38 Schwarzchild's equation At wavelengths of terrestrial radiation, absorption and emission are equally important and must be considered simultaneously. Absorption of terrestrial radiation along an upward path through the atmosphere is described by the relation -dL λ abs = L λ k λ ρ sec φ dz. Making use of Kirchhoff's law it is possible to write an analogous expression for the emission, dL λ em = B λ d  λ = B λ da λ = B λ k λ ρ sec φ dz, where B λ is the blackbody monochromatic radiance specified by Planck's law. Together dL λ = - (L λ - B λ ) k λ ρ sec φ dz. This expression, known as Schwarzchild's equation, is the basis for computations of the transfer of infrared radiation.

39 Schwarzschild to RTE dL λ = - (L λ - B λ ) k λ ρ dz but  d  =  k ρ dz since  = exp [- k  ρ dz]. z so  dL λ = - (L λ - B λ ) d   dL λ + L λ d  = B λ d  d (L λ  ) = B λ d  Integrate from 0 to   L λ (  )  (  ) - L λ (0 )  (0 ) =  B λ [d  /dz] dz. 0 and  L λ (sat) = L λ (sfc)  (sfc) +  B λ [d  /dz] dz. 0

40 Radiative Transfer Equation The radiance leaving the earth-atmosphere system sensed by a satellite borne radiometer is the sum of radiation emissions from the earth-surface and each atmospheric level that are transmitted to the top of the atmosphere. Considering the earth's surface to be a blackbody emitter (emissivity equal to unity), the upwelling radiance intensity, I, for a cloudless atmosphere is given by the expression I =  sfc B ( T sfc )  (sfc - top) +   layer B ( T layer )  (layer - top) layers where the first term is the surface contribution and the second term is the atmospheric contribution to the radiance to space.

41 In standard notation, I =  sfc B (T(p s ))  (p s ) +   (  p) B (T(p))  (p) p The emissivity of an infinitesimal layer of the atmosphere at pressure p is equal to the absorptance (one minus the transmittance of the layer). Consequently,  (  p)  (p) = [1 -  (  p)]  (p) Since transmittance is an exponential function of depth of absorbing constituent, p+  p p  (  p)  (p) = exp [ -  k q g -1 dp] * exp [ -  k q g -1 dp] =  (p +  p) p o Therefore  (  p)  (p) =  (p) -  (p +  p) = -  (p). So we can write I =  sfc B (T(p s ))  (p s ) -  B (T(p))  (p). p which when written in integral form reads p s I =  sfc B (T(p s ))  (p s ) -  B (T(p)) [ d  (p) / dp ] dp. o

42 When reflection from the earth surface is also considered, the Radiative Transfer Equation for infrared radiation can be written o I =  sfc B (T s )  (p s ) +  B (T(p)) F (p) [d  (p)/ dp ] dp p s where F (p) = { 1 + (1 -  ) [  (p s ) /  (p)] 2 } The first term is the spectral radiance emitted by the surface and attenuated by the atmosphere, often called the boundary term and the second term is the spectral radiance emitted to space by the atmosphere directly or by reflection from the earth surface. The atmospheric contribution is the weighted sum of the Planck radiance contribution from each layer, where the weighting function is [ d  (p) / dp ]. This weighting function is an indication of where in the atmosphere the majority of the radiation for a given spectral band comes from.

43 Earth emitted spectra overlaid on Planck function envelopes CO2 H20 O3 CO2

44

45 Re-emission of Infrared Radiation

46 Radiative Transfer through the Atmosphere

47 Longwave CO2 14.71680CO2, strat temp 14.42696CO2, strat temp 14.13711CO2, upper trop temp 13.94733CO2, mid trop temp 13.45748CO2, lower trop temp 12.76790H2O, lower trop moisture 12.07832H2O, dirty window Midwave H2O & O3 11.08907window 9.791030O3, strat ozone 7.4101345H2O, lower mid trop moisture 7.0111425H2O, mid trop moisture 6.5121535H2O, upper trop moisture Weighting Functions

48 High Mid Low  ABC  ABCABC line broadening with pressure helps to explain weighting functions  ABC

49 CO2 channels see to different levels in the atmosphere 14.2 um 13.9 um 13.6 um 13.3 um

50 Improvements with Hyperspectral IR Data

51 The advanced sounder has more and sharper weighting functions UW/CIMSS These water vapor weighting functions reflect the radiance sensitivity of the specific channels to a water vapor % change at a specific level (equivalent to dR/dlnq scaled by dlnp). Moisture Weighting Functions Pressure Weighting Function Amplitude Wavenumber (cm-1)

52 Characteristics of RTE *Radiance arises from deep and overlapping layers *The radiance observations are not independent *There is no unique relation between the spectrum of the outgoing radiance and T(p) or Q(p) *T(p) is buried in an exponent in the denominator in the integral *Q(p) is implicit in the transmittance *Boundary conditions are necessary for a solution; the better the first guess the better the final solution

53 To investigate the RTE further consider the atmospheric contribution to the radiance to space of an infinitesimal layer of the atmosphere at height z, dI λ (z) = B λ (T(z)) d  λ (z). Assume a well-mixed isothermal atmosphere where the density drops off exponentially with height ρ = ρ o exp ( -  z), and assume k λ is independent of height, so that the optical depth can be written for normal incidence  σ λ =  k λ ρ dz =  -1 k λ ρ o exp( -  z) z and the derivative with respect to height dσ λ = - k λ ρ o exp( -  z) = -  σ λ. dz Therefore, we may obtain an expression for the detected radiance per unit thickness of the layer as a function of optical depth, dI λ (z) d  λ (z) = B λ (T const ) = B λ (T const )  σ λ exp (-σ λ ). dz dz The level which is emitting the most detected radiance is given by d dI λ (z) { } = 0, or where σ λ = 1. dz Most of monochromatic radiance detected is emitted by layers near level of unit optical depth.

54 Profile Retrieval from Sounder Radiances p s I =  sfc B (T(p s ))  (p s ) -  B (T(p)) F (p) [ d  (p) / dp ] dp. o I1, I2, I3,...., In are measured with the sounder P(sfc) and T(sfc) come from ground based conventional observations  (p) are calculated with physics models (using for CO2 and O3)  sfc is estimated from a priori information (or regression guess) First guess solution is inferred from (1) in situ radiosonde reports, (2) model prediction, or (3) blending of (1) and (2) Profile retrieval from perturbing guess to match measured sounder radiances

55 Example GOES Sounding

56 Sounder Retrieval Products Direct brightness temperatures Derived in Clear Sky 20 retrieved temperatures (at mandatory levels) 20 geo-potential heights (at mandatory levels) 11 dewpoint temperatures (at 300 hPa and below) 3 thermal gradient winds (at 700, 500, 400 hPa) 1 total precipitable water vapor 1 surface skin temperature 2 stability index (lifted index, CAPE) Derived in Cloudy conditions 3 cloud parameters (amount, cloud top pressure, and cloud top temperature) Mandatory Levels (in hPa) sfc78030070 100070025050 95067020030 92050015020 85040010010

57 Example GOES TPW DPI

58

59 Direct Physical Solution to RTE To solve for temperature and moisture profiles simultaneously, a simplified form of RTE is considered, p s R = B o +   dB o which comes integrating the atmospheric term by parts in the more familiar form of the RTE. Then in perturbation form, where  represents a perturbation with respect to an a priori condition p s p s  R =  (  ) dB +   d(  B) o o Integrating by parts, p s p s p s p s   d(  B) =   B  -   B d  =  s  B s -   B d , o o o o yields p s p s  R =  (  ) dB +  s  B s -   B d  o o

60 Write the differentials with respect to temperature and pressure  B  B  B  T   R =  T b,  B =  T, dB = dp, d  = dp.  T b  T  T  p  p Substituting p s  T  B  B p s   B  B  T b =   [ / ] dp -   T [ / ] dp o  p  T  T b o  p  T  T b  B s  B +  T s [ / ]  s  T s  T b where T b is the brightness temperature. Finally, assume that the transmittance perturbation is dependent only on the uncertainty in the column of precipitable water density weighted path length u according to the relation  = [  /  u ]  u. Thus p s  T   B  B p  τ  B  B  B s  B  T b =   u [ / ] dp -   T [ / ] dp +  T s [ / ]  s o  p  u  T  T b o  p  T  T b  T s  T b = f [  u,  T,  T s ]

61 Spectral distribution of radiance contributions due to profile uncertainties Spectral distribution of reflective changes for emissivity increments of 0.01

62 Spatial smoothness of temperature solution with and wo sfc reflection standard deviation of second spatial derivative ( multiplied by 100 * km * km) Average absolute temp diff (solution with and wo sfc reflection vs raobs)

63 BT differences resulting from 10 ppmv change in CO2 concentration

64 Spectral Characteristics of Energy Sources and Sensing Systems

65

66 Radiation is governed by Planck’s Law c 2 / T B(,T) = c 1 /{ 5 [e -1] } In microwave region c 2 /λT << 1 so that c 2 / T e = 1 + c 2 /λT + second order And classical Rayleigh Jeans radiation equation emerges B λ (T)  [c 1 / c 2 ] [T / λ 4 ] Radiance is linear function of brightness temperature.

67 Microwave Form of RTE atm p s  ' λ (p) ref atm sfc I sfc = ε λ B λ (T s )  λ (p s ) + (1-ε λ )  λ (p s )  B λ (T(p)) d ln p     λ o  ln p         p s  ' λ (p)     I λ = ε λ B λ (T s )  λ (p s ) + (1-ε λ )  λ (p s )  B λ (T(p)) d ln p    o  ln p     o  λ (p)__________ +  B λ (T(p)) d ln p sfc p s  ln p In the microwave region c 2 /λT << 1, so the Planck radiance is linearly proportional to the temperature B λ (T)  [c 1 / c 2 ] [T / λ 4 ] So o  λ (p) T bλ = ε λ T s (p s )  λ (p s ) +  T(p) F λ (p) d ln p p s  ln p where  λ (p s ) F λ (p) = { 1 + (1 - ε λ ) [ ] 2 }.  λ (p)

68 The transmittance to the surface can be expressed in terms of transmittance to the top of the atmosphere by remembering 1 p s  ' λ (p) = exp [ -  k λ (p) g(p) dp ] g p p s p = exp [ -  +  ] o o =  λ (p s ) /  λ (p). So  ' λ (p)  λ (p s )  λ (p) = -.  ln p (  λ (p)) 2  ln p [ remember that  λ (p s, p)  λ (p, 0) =  λ (p s, 0) and  λ (p s, p) =  λ (p, p s ) ]

69

70

71 Spectral regions used for remote sensing of the earth atmosphere and surface from satellites.  indicates emissivity, q denotes water vapour, and T represents temperature.

72 Relevant Material in Applications of Meteorological Satellites CHAPTER 6 - DETECTING CLOUDS 6.1 RTE in Cloudy Conditions6-1 6.2Inferring Clear Sky Radiances in Cloudy Conditions6-2 6.3finding Clouds6-3 6.3.1Threshold Tests for Finding Cloud6-4 6.3.2Spatial Uniformity Tests to Find Cloud6-8 6.4The Cloud Mask Algorithm6-10 CHAPTER 7 - SURFACE TEMPERATURE 7.1 Sea Surface Temperature Determination7-1 7.2. Water Vapor Correction for SST Determinations7-3 7.3Accounting for Surface Emissivity in the Determination of SST7-6 CHAPTER 8 - TECHNIQUES FOR DETERMINING ATMOSPHERIC PARAMETERS 8.1 Total Water Vapor Estimation8-1 8.3 Cloud Height and Effective Emissivity Determination8-8

73 First Order Estimation of TPW Moisture attenuation in atmospheric windows varies linearly with optical depth. - k u  = e = 1 - k u For same atmosphere, deviation of brightness temperature from surface temperature is a linear function of absorbing power. Thus moisture corrected SST can inferred by using split window measurements and extrapolating to zero k T s = T bw1 + [ k w1 / (k w2 - k w1 ) ] [T bw1 - T bw2 ]. Moisture content of atmosphere inferred from slope of linear relation.

74 Water vapour evaluated in multiple infrared window channels where absorption is weak, so that  w = exp[- k w u] ~ 1 - k w u where w denotes window channel and d  w = - k w du What little absorption exists is due to water vapour, therefore, u is a measure of precipitable water vapour. RTE in window region u s I w = B sw (1-k w u s ) + k w  B w du o u s represents total atmospheric column absorption path length due to water vapour, and s denotes surface. Defining an atmospheric mean Planck radiance, then _ _ u s u s I w = B sw (1-k w u s ) + k w u s B w with B w =  B w du /  du o o Since B sw is close to both I w and B w, first order Taylor expansion about the surface temperature T s allows us to linearize the RTE with respect to temperature, so _ T bw = T s (1-k w u s ) + k w u s T w, where T w is mean atmospheric temperature corresponding to B w.

75 For two window channels (11 and 12um) the following ratio can be determined. _ T s - T bw1 k w1 u s (T s - T w1 ) k w1 _________ = ______________ = ___ _ T s - T bw2 k w1 u s (T s - T w2 ) k w2 where the mean atmospheric temperature measured in the one window region is assumed to be comparable to that measured in the other, T w1 ~ T w2, Thus it follows that k w1 T s = T bw1 + [T bw1 - T bw2 ] k w2 - k w1 and T bw - T s u s =. _ k w (T w - T s ) Obviously, the accuracy of the determination of the total water vapour concentration depends upon the contrast between the surface temperature, T s, and _ the effective temperature of the atmosphere T w

76 Two unknowns,  and Pc, require two measurements Radiance from a partly cloudy FOV

77 RTE in Cloudy Conditions I λ = η I cd + (1 - η) I clr where cd = cloud, clr = clear, η = cloud fraction λ λ o I clr = B λ (T s )  λ (p s ) +  B λ (T(p)) d  λ. λ p s p c I cd = (1-ε λ ) B λ (T s )  λ (p s ) + (1-ε λ )  B λ (T(p)) d  λ λ p s o + ε λ B λ (T(p c ))  λ (p c ) +  B λ (T(p)) d  λ p c ε λ is emittance of cloud. First two terms are from below cloud, third term is cloud contribution, and fourth term is from above cloud. After rearranging p c dB λ I λ - I λ clr = ηε λ   (p) dp. p s dp

78 Cloud Properties from CO2 Slicing RTE for cloudy conditions indicates dependence of cloud forcing (observed minus clear sky radiance) on cloud amount (  ) and cloud top pressure (p c ) p c (I - I clr ) =    dB. p s Higher colder cloud or greater cloud amount produces greater cloud forcing; dense low cloud can be confused for high thin cloud. Two unknowns require two equations. p c can be inferred from radiance measurements in two spectral bands where cloud emissivity is the same.  is derived from the infrared window, once p c is known.

79 Cloud Clearing For a single layer of clouds, radiances in one spectral band vary linearly with those of another as cloud amount varies from one field of view (fov) to another Clear radiances can be inferred by extrapolating to cloud free conditions. R CO2 R IRW cloudy clear x xx x x partly cloudy N=1N=0

80 Paired field of view proceeds as follows. For a given wavelength λ, radiances from two spatially independent, but geographically close, fields of view are written I λ,1 = η 1 I λ,1 cd + (1 - η 1 ) I λ,1 c, I λ,2 = η 2 I λ,2 cd + (1 - η 2 ) I λ,2 c, If clouds are at uniform altitude, and clear air radiance is in each FOV I λ cd = I λ,1 cd = I λ,2 cd I λ c = I λ,1 c = I λ,2 c cd c c η 1 (I λ - I λ ) η 1 I λ,1 - I λ = = η* =, cd c c η 2 (I λ - I λ ) η 2 I λ,2 - I λ where η* is the ratio of the cloud amounts for the two geographically independent fields of view of the sounding radiometer. Therefore, the clear air radiance from an area possessing broken clouds at a uniform altitude is given by c I λ = [ I λ,1 - η* I λ,2 ] /[1 - η*] where η* still needs to be determined. Given an independent measurement of surface temperature, T s, and measurements I w,1 and I w,2 in a spectral window channel, then η* can be determined by η* = [I w,1 - B w (T s )] / [I w,2 - B w (T s )] and I λ c for different spectral channels can be solved.

81 1-km temperature rms and 2 km water vapor mixing ratio % rms from simulated hyperspectral IR retrievals Hyperspectral IR gets 1 K for 1 km T(p) and 15% for 2 km Q(p)

82 GOES-12 Sounder – Brightness Temperature (Radiances) – 12 bands

83 GOES Sounders –Total Precipitable Water

84 GOES Sounders –Lifted Index Stability

85

86

87


Download ppt "Radiation and the Radiative Transfer Equation Lectures in Bertinoro 23 Aug – 2 Sep 2004 Paul Menzel NOAA/NESDIS/ORA."

Similar presentations


Ads by Google