Presentation is loading. Please wait.

Presentation is loading. Please wait.

Matrices and Systems of Equations

Similar presentations


Presentation on theme: "Matrices and Systems of Equations"โ€” Presentation transcript:

1 Matrices and Systems of Equations

2 Definition of Matrix If m and n are positive integers, an m x n matrix (read โ€œm x nโ€) is a rectangular array In which each entry of the matrix is a real number. An m x n matrix has m rows and n columns. ๐‘Ž11 ๐‘Ž12 ๐‘Ž13โ‹ฏ ๐‘Ž21 ๐‘Ž22 ๐‘Ž23โ‹ฏ ๐‘Ž31 โ‹ฎ ๐‘Ž๐‘š1 ๐‘Ž32 โ‹ฎ ๐‘Ž๐‘š2 ๐‘Ž33โ‹ฏ โ‹ฎ ๐‘Ž๐‘š3โ‹ฏ ๐‘Ž1๐‘› ๐‘Ž2๐‘› ๐‘Ž3๐‘› โ‹ฎ ๐‘Ž๐‘š๐‘› TW provide further explanation and draw examples on the board of various matrix dimensions.

3 Matrix Order Determine the order of each matrix. 2 1 โˆ’3 0 5 0 2 โˆ’2 โˆ’7 4 TW use these problems during guided practice. Slide may be moved until the end of the presentation.

4 Writing an Augmented Matrix
๐‘Š๐‘Ÿ๐‘–๐‘ก๐‘’ ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘ข๐‘”๐‘š๐‘’๐‘›๐‘ก๐‘’๐‘‘ ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ ๐‘“๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š ๐‘œ๐‘“ ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘ . ๐‘ฅ+3๐‘ฆ=9 โˆ’๐‘ฆ+4๐‘ง=โˆ’2 ๐‘ฅโˆ’5๐‘ง=0 Solution Begin by writing the linear system and aligning the variables. (on board) SW copy the aligned version of the system from the board.

5 Writing an Augmented Matrix Continued
๐‘๐‘’๐‘ฅ๐‘ก, ๐‘ข๐‘ ๐‘’ ๐‘กโ„Ž๐‘’ ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก๐‘  ๐‘Ž๐‘›๐‘‘ ๐‘๐‘œ๐‘›๐‘ ๐‘ก๐‘Ž๐‘›๐‘ก ๐‘ก๐‘’๐‘Ÿ๐‘š๐‘  ๐‘Ž๐‘  ๐‘กโ„Ž๐‘’ ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ ๐‘’๐‘›๐‘ก๐‘Ÿ๐‘–๐‘’๐‘ . ๐ผ๐‘›๐‘๐‘™๐‘ข๐‘‘๐‘’ ๐‘ง๐‘’๐‘Ÿ๐‘œ๐‘  ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘›๐‘ฆ ๐‘š๐‘–๐‘ ๐‘ ๐‘–๐‘›๐‘” ๐‘๐‘œ๐‘’๐‘“๐‘“๐‘–๐‘๐‘–๐‘’๐‘›๐‘ก๐‘  โ‹ฎ 0 โˆ’1 4โ‹ฎ 1 0 โˆ’5โ‹ฎ 9 โˆ’2 0 TW point out that the coefficients from this matrix come from the system of equations from the previous slide.

6 Try thisโ€ฆ ๐‘Š๐‘Ÿ๐‘–๐‘ก๐‘’ ๐‘กโ„Ž๐‘’ ๐‘Ž๐‘ข๐‘”๐‘š๐‘’๐‘›๐‘ก๐‘’๐‘‘ ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ ๐‘“๐‘œ๐‘Ÿ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘ฆ๐‘ ๐‘ก๐‘’๐‘š ๐‘œ๐‘“ ๐‘™๐‘–๐‘›๐‘’๐‘Ž๐‘Ÿ ๐‘’๐‘ž๐‘ข๐‘Ž๐‘ก๐‘–๐‘œ๐‘›๐‘ . ๐‘ฅ+๐‘ฆ+๐‘ง=2 2๐‘ฅโˆ’๐‘ฆ+3๐‘ง=โˆ’1 โˆ’๐‘ฅ+2๐‘ฆโˆ’๐‘ง=4 This slide will be used for guided practice.

7 Elementary Row Operations
1. Interchange two rows 2. Multiply a row by a nonzero constant 3. Add a multiple of a row to another row. TW provide examples of each of the operations listed on the slide. SW copy down these examples on their slides.

8 Example ๐ผ๐‘›๐‘ก๐‘’๐‘Ÿ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘ ๐‘’๐‘๐‘œ๐‘›๐‘‘ ๐‘Ÿ๐‘œ๐‘ค๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘œ๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ โˆ’ โˆ’ TW provide an explanation of the operation that took place. โˆ’ โˆ’

9 Example ๐ด๐‘‘๐‘‘ โˆ’2 ๐‘ก๐‘–๐‘š๐‘’๐‘  ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ÿ๐‘œ๐‘ค ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘œ๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ ๐‘ก๐‘œ ๐‘กโ„Ž๐‘’ ๐‘กโ„Ž๐‘–๐‘Ÿ๐‘‘ ๐‘Ÿ๐‘œ๐‘ค โˆ’4 0 3 โˆ’ โˆ’1 โˆ’2 TW show the steps that take place between the original matrix and the final matrix. 1 2 โˆ’4 0 3 โˆ’2 0 โˆ’ โˆ’1 โˆ’8

10 Try thisโ€ฆ ๐ผ๐‘›๐‘ก๐‘’๐‘Ÿ๐‘โ„Ž๐‘Ž๐‘›๐‘”๐‘’ ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ž๐‘›๐‘‘ ๐‘กโ„Ž๐‘–๐‘Ÿ๐‘‘ ๐‘Ÿ๐‘œ๐‘ค๐‘  ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘œ๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ โˆ’1 1 2 โˆ’ This slide will be used for guided practice.

11 Try thisโ€ฆ ๐ด๐‘‘๐‘‘ โˆ’3 ๐‘ก๐‘–๐‘š๐‘’๐‘  ๐‘กโ„Ž๐‘’ ๐‘“๐‘–๐‘Ÿ๐‘ ๐‘ก ๐‘Ÿ๐‘œ๐‘ค ๐‘œ๐‘“ ๐‘กโ„Ž๐‘’ ๐‘œ๐‘Ÿ๐‘–๐‘”๐‘–๐‘›๐‘Ž๐‘™ ๐‘š๐‘Ž๐‘ก๐‘Ÿ๐‘–๐‘ฅ ๐‘ก๐‘œ ๐‘กโ„Ž๐‘’ ๐‘ ๐‘’๐‘๐‘œ๐‘›๐‘‘ ๐‘Ÿ๐‘œ๐‘ค โˆ’2 7 โˆ’ โˆ’1 3 1 This slide will be used for guided practice.

12 Row-Echelon Form and Reduced Row-Echelon Form
A matrix in row-echelon form has the following properties. Any rows consisting entirely of zeros occur at the bottom of the matrix. For each row that does not consist entirely of zeros, the first nonzero entry is 1 (called a leading 1). For two successive (nonzero) rows, the leading 1 in the higher row is farther to the left than the leading 1 in the lower row. A matrix in row-echelon form is in reduced row-echelon form if every column that has a leading 1 has zeros in every position above and below its leading 1.

13 Example 1 2 โˆ’1 0 1 0 0 0 1 4 3 โˆ’2 Row-Echelon Form
1 2 โˆ’ โˆ’2 Row-Echelon Form Reduced Row-Echelon Form TW describe specific reasons why each matrix is labeled. SW be required to copy down notes.

14 Try thisโ€ฆ Determine whether each matrix is in row-echelon form. If it is, determine whether the matrix is in reduced row-echelon form. 1 0 โˆ’ โˆ’2 0 โˆ’1 โˆ’6 0 This slide will be used for guided practice.

15 Gaussian Elimination with Back-Substitution
Write the augmented matrix of the system of linear equations. Use elementary row operations to rewrite the augmented matrix in row-echelon form. Write the system of linear equations corresponding to the matrix in row-echelon form and use back-substitution to find the solution.

16 Example Solve the system.
๐‘ฅ+ ๐‘ฆ+ ๐‘งโˆ’ 2๐‘ค =โˆ’3 2๐‘ฆโˆ’ ๐‘ง =2 2๐‘ฅ+ ๐‘ฅโˆ’ 4๐‘ฆ+ ๐‘งโˆ’ 3๐‘ค=โˆ’2 4๐‘ฆโˆ’ 7๐‘งโˆ’ ๐‘ค =โˆ’19 Will be completed on board. TW complete the problem on the board. Students will copy down the necessary steps.

17 Try thisโ€ฆ Solve the system.
๐‘ฅ+ ๐‘ฆ+ ๐‘งโˆ’ 2๐‘ค =โˆ’3 2๐‘ฆโˆ’ ๐‘ง =2 2๐‘ฅ+ ๐‘ฅโˆ’ 4๐‘ฆ+ ๐‘งโˆ’ 3๐‘ค=โˆ’2 4๐‘ฆโˆ’ 7๐‘งโˆ’ ๐‘ค =โˆ’19 This slide will be used for guided practice.


Download ppt "Matrices and Systems of Equations"

Similar presentations


Ads by Google