Download presentation
Presentation is loading. Please wait.
Published byMelvin Price Modified over 9 years ago
1
1 STA 517 – Chp4 Introduction to Generalized Linear Models 4.3 GENERALIZED LINEAR MODELS FOR COUNTS count data - assume a Poisson distribution counts in contingency tables with categorical response variables. modeling count or rate data for a single discrete response variable.
2
2 STA 517 – Chp4 Introduction to Generalized Linear Models 4.3.1 Poisson Loglinear Models The Poisson distribution has a positive mean µ. Although a GLM can model a positive mean using the identity link, it is more common to model the log of the mean. Like the linear predictor, the log mean can take any real value. The log mean is the natural parameter for the Poisson distribution, and the log link is the canonical link for a Poisson GLM. A Poisson loglinear GLM assumes a Poisson distribution for Y and uses the log link.
3
3 STA 517 – Chp4 Introduction to Generalized Linear Models Log linear model The Poisson loglinear model with explanatory variable X is For this model, the mean satisfies the exponential relationship x A 1-unit increase in x has a multiplicative impact of on µ The mean at x+1 equals the mean at x multiplied by.
4
4 STA 517 – Chp4 Introduction to Generalized Linear Models 4.3.2 Horseshoe Crab Mating Example
5
5 STA 517 – Chp4 Introduction to Generalized Linear Models
6
6 4.3.2 Horseshoe Crab Mating Example a study of nesting horseshoe crabs. Each female horseshoe crab had a male crab resident in her nest. AIM: factors affecting whether the female crab had any other males, called satellites, residing nearby. Explanatory variables are : C - the female crab’s color, S - spine condition, Wt - weight, W - carapace width. Outcome: number of satellites (Sa) of a female crab. For now, we only study W (carapace width)
7
7 STA 517 – Chp4 Introduction to Generalized Linear Models number of satellites (Sa) = f (W) Scatter plot – weakly linear ? (N=173) Grouped plot: To get a clearer picture, we grouped the female crabs into width categories and calculated the sample mean number of satellites for female crabs in each category. Figure 4.4 plots these sample means against the sample mean width for crabs in each category. The sample means show a strong increasing trend. WHY?
8
8 STA 517 – Chp4 Introduction to Generalized Linear Models
9
9
10
10 STA 517 – Chp4 Introduction to Generalized Linear Models
11
11 STA 517 – Chp4 Introduction to Generalized Linear Models
12
12 STA 517 – Chp4 Introduction to Generalized Linear Models
13
13 STA 517 – Chp4 Introduction to Generalized Linear Models
14
14 STA 517 – Chp4 Introduction to Generalized Linear Models SAS code data table4_3; input C S W Wt Sa@@; cards; 2 3 28.3 3.05 8 3 3 22.5 … ; proc genmod data=table4_3; model Sa=W/dist=poisson link=identity; ods output ParameterEstimates=PE1; run; proc genmod data=table4_3; model Sa=w/dist=poisson link=log; ods output ParameterEstimates=PE2; run;
15
15 STA 517 – Chp4 Introduction to Generalized Linear Models data _NULL_; set PE1; if Parameter="Intercept" then call symput("intercp1", Estimate); if Parameter="W" then call symput("b1", Estimate); data _NULL_; set PE2; if Parameter="Intercept" then call symput("intercp2", Estimate); if Parameter="W" then call symput("b2", Estimate); run; data tmp; do W=22 to 32 by 0.01; mu1=&intercp1 + &b1*W; mu2=exp(&intercp2 + &b2*W); output; end; run;
16
16 STA 517 – Chp4 Introduction to Generalized Linear Models Graphs proc sort data=table4_3; by W; data tmp1; merge table4_3 tmp; by W; run; symbol1 i=join line=1 color=green value=none; symbol2 i=join line=2 color=red value=none; symbol3 i=none line=3 value=circle; proc gplot data=tmp1; plot mu1*W mu2*W Sa*W / overlay; run;
17
17 STA 517 – Chp4 Introduction to Generalized Linear Models
18
18 STA 517 – Chp4 Introduction to Generalized Linear Models Group data /*group data*/ data table4_3a; set table4_3; W_g=round(W-0.75)+0.75; *if W<23.25 then W_g=22.5; *if W>29.25 then W_g=30.5; run; proc sql; create table table4_3g as select W_g, count(W_g) as Num_of_Cases, sum(Sa) as Num_of_Satellites, mean(Sa) as Sa_g, var(sa) as Var_SA from table4_3a group by W_g; quit; proc print; run;
19
19 STA 517 – Chp4 Introduction to Generalized Linear Models SAS output Num_of_ Num_of_ Obs W_g Cases Satellites Sa_g Var_SA 1 20.75 1 0 0.00000. 2 21.75 1 0 0.00000. 3 22.75 12 14 1.16667 3.0606 4 23.75 14 20 1.42857 8.8791 5 24.75 28 67 2.39286 6.5437 6 25.75 39 105 2.69231 11.3765 7 26.75 22 63 2.86364 6.8853 8 27.75 24 93 3.87500 8.8098 9 28.75 18 71 3.94444 16.8791 10 29.75 9 53 5.88889 9.8611 11 30.75 2 6 3.00000 0.0000 12 31.75 2 6 3.00000 2.0000 13 33.75 1 7 7.00000.
20
20 STA 517 – Chp4 Introduction to Generalized Linear Models Graphs data tmp2; merge table4_3g(rename=(W_g=W)) tmp; by W; run; symbol1 i=join line=1 color=green value=none; symbol2 i=join line=2 color=red value=none; symbol3 i=none line=3 value=circle; proc gplot data=tmp2; plot mu1*W mu2*W Sa_g*W / overlay; run;
21
21 STA 517 – Chp4 Introduction to Generalized Linear Models
22
22 STA 517 – Chp4 Introduction to Generalized Linear Models 4.3.3 Overdispersion for Poisson GLMs
23
23 STA 517 – Chp4 Introduction to Generalized Linear Models Solution?
24
24 STA 517 – Chp4 Introduction to Generalized Linear Models 4.3.4 Negative binomial GLMs
25
25 STA 517 – Chp4 Introduction to Generalized Linear Models
26
26 STA 517 – Chp4 Introduction to Generalized Linear Models /*fit negative binomial with identical link to count for overdispersion*/ proc genmod data=table4_3; model Sa=W/dist=NEGBIN link=identity; ods output ParameterEstimates=PE3; run;
27
27 STA 517 – Chp4 Introduction to Generalized Linear Models 4.3.6 Poisson GLM of independence in I × J contingence tables
28
28 STA 517 – Chp4 Introduction to Generalized Linear Models
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.