Download presentation
Published byArlene Patterson Modified over 9 years ago
1
Inelastic Collisions Review Impulse/Momentum 3 cases
Indeterminate Inelastic Collision examples Ballistic Pendulum Other Inelastic examples
2
“Gravity” movie Newton’s Laws (conservation of momentum)
90 minute orbital time (different orbits?) CO2 fire extinguisher thruster Reentry (she’s going fast!)
3
Review – Impulse/Momentum
Collisions 𝐹 12 =− 𝐹 𝑏𝑦 𝑎𝑐𝑡𝑖𝑜𝑛−𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛 𝐹 12 ∆𝑡=− 𝐹 21 ∆𝑡 𝐼𝑚𝑝𝑢𝑙𝑠𝑒 1 = 𝐼𝑚𝑝𝑢𝑙𝑠𝑒 2 ∆ 𝑃 1 =−∆ 𝑃 (𝑚 1 𝑣 1 ′ − 𝑚 1 𝑣 1 )= −(𝑚 2 𝑣 2 ′ − 𝑚 2 𝑣 2 ) 𝑃 1 + 𝑃 2 = 𝑃 1 ′ + 𝑃 2 ′ 𝑚 1 𝑣 𝑚 2 𝑣 2 = 𝑚 1 𝑣 1 ′ + 𝑚 2 𝑣 2 ′ F12 = force on 1 due to 2 1 2
4
Conservation of Momentum
𝑚 1 𝑣 𝑚 2 𝑣 2 = 𝑚 1 𝑣 1 ′ + 𝑚 2 𝑣 2 ′ Too many variables – 3 possibilities Inelastic – eliminate variable 𝑚 1 𝑣 𝑚 2 𝑣 2 = 𝑚 1 𝑣′ + 𝑚 2 𝑣′ Elastic - generate 2nd equation 1 2 𝑚 1 𝑣 𝑚 2 𝑣 2 2 = 1 2 𝑚 1 𝑣 1 ′ 𝑚 2 𝑣 2 ′ 2 Indeterminate - need more info
5
Inelastic Example 1 Conservation of momentum Inelastic
10,000 kg railroad car traveling at 24 m/s strikes a second 10,000 kg car at rest. They couple together, what is final speed? Conservation of momentum 𝑚 1 𝑣 𝑚 2 𝑣 2 = 𝑚 1 𝑣 1 ′ + 𝑚 2 𝑣 2 ′ Inelastic 𝑚 1 𝑣 𝑚 2 𝑣 2 = 𝑚 1 𝑣′ + 𝑚 2 𝑣′ 10,000 𝑘𝑔∙ 24 𝑚 𝑠 +0=(10,000 𝑘𝑔+10,000 𝑘𝑔) 𝑣′ 𝑣 ′ =12 𝑚/𝑠
6
Inelastic Example 1 (cont)
Make the moving car 20,000 kg 𝑚 1 𝑣 𝑚 2 𝑣 2 = 𝑚 1 𝑣′ + 𝑚 2 𝑣′ 20,000 𝑘𝑔∙ 24 𝑚 𝑠 +0=(20,000 𝑘𝑔+10,000 𝑘𝑔) 𝑣′ 𝑣 ′ =16 𝑚/𝑠 Make the stationary car 20,000 kg 10,000 𝑘𝑔∙ 24 𝑚 𝑠 +0=(10,000 𝑘𝑔+20,000 𝑘𝑔) 𝑣′ 𝑣 ′ =8 𝑚/𝑠
7
Inelastic Example 1 (cont)
What happened to the energy? Kinetic energy before 1 2 𝑚 1 𝑣 𝑚 2 𝑣 2 2 = ,000𝑘𝑔 𝑚 𝑠 2 =2.88∙ 𝐽 Kinetic energy after 1 2 (𝑚 1 + 𝑚 2 ) 𝑣′ 2 = ,000𝑘𝑔 𝑚 𝑠 2 =1.44∙ 𝐽 Lost in heat
8
𝑣 1 ′ =−2.5 𝑚/𝑠 in opposite direction
Inelastic Example 2 Calculate the recoil velocity of 5 kg rifle that shoots a 0.02 kg bullet at 620 m/s. Conservation of momentum 𝑚 1 𝑣 𝑚 2 𝑣 2 = 𝑚 1 𝑣 1 ′ + 𝑚 2 𝑣 2 ′ Inelastic collision in reverse. 5 𝑘𝑔∙0 𝑚 𝑠 +.02 𝑘𝑔∙0 𝑚 𝑠 =0=5 𝑘𝑔 ∙𝑣 ′ 𝑘𝑔∙620𝑚/𝑠 𝑣 1 ′ =−2.5 𝑚/𝑠 in opposite direction
9
Ballistic Pendulum Sequence Solve Backwards!
Conservation momentum Conservation of energy Solve Backwards! Step 1: Conservation momentum: 𝑚𝑣= 𝑚+𝑀 𝑣 ′ 𝑣= 𝑚+𝑀 𝑚 𝑣′ Step 2: Conservation of energy: 1 2 𝑚+𝑀 𝑣′ 2 = 𝑚+𝑀 𝑔ℎ 𝑣 ′ = 2𝑔ℎ Combining: 𝑣= 𝑚+𝑀 𝑚 2𝑔ℎ
10
Ballistic Pendulum Example
For h2 𝑣 2 = 𝑚+𝑀 𝑚 2𝑔 ℎ 2 𝑣 1 = 𝑚+𝑀 𝑚 2𝑔 ℎ 1 Combining 𝑣 2 𝑣 1 = 𝑚+𝑀 𝑚 2𝑔 ℎ 2 𝑚+𝑀 𝑚 2𝑔 ℎ = ℎ 2 ℎ 1
11
Example 1 1. Conservation momentum 2. Conservation energy
𝑚 𝑏𝑢𝑙 + 𝑚 𝑏𝑙𝑜𝑐𝑘 𝑣 ′ = 𝑚 𝑏𝑢𝑙 𝑣 𝑏𝑢𝑙 + 𝑚 𝑏𝑙𝑜𝑐𝑘 𝑣 𝑏𝑙𝑜𝑐𝑘 .029 𝑘𝑔+1.4 𝑘𝑔 𝑣 ′ =.029 𝑘𝑔 510 𝑚 𝑠 +0 𝑣′=10.3 𝑚/𝑠 2. Conservation energy 1 2 𝑚 𝑏𝑢𝑙 + 𝑚 𝑏𝑙𝑜𝑐𝑘 𝑣′ 2 = 𝑚 𝑏𝑢𝑙 + 𝑚 𝑏𝑙𝑜𝑐𝑘 𝑔ℎ ℎ= 𝑣′ 2 2𝑔 =5.47 𝑚
12
Example 2 1. Conservation of momentum 2. Work-energy
0− 𝑚 𝑏𝑢𝑙 + 𝑚 𝑏𝑙𝑜𝑐𝑘 𝑣 ′ 2 = −𝜇 𝑘 𝑚 𝑏𝑢𝑙 + 𝑚 𝑏𝑙𝑜𝑐𝑘 𝑔 𝑥 𝑣 ′ = 2𝜇 𝑘 𝑔 𝑥 𝑣 ′ = 2∙0.25∙9.8 𝑚 𝑠 2 ∙9.5 𝑚 =6.82 𝑚 𝑠 1. Conservation of momentum 𝑚 𝑏𝑢𝑙 𝑣 𝑏𝑢𝑙 + 𝑚 𝑏𝑙𝑜𝑐𝑘 𝑣 𝑏𝑙𝑜𝑐𝑘 = 𝑚 𝑏𝑢𝑙 + 𝑚 𝑏𝑙𝑜𝑐𝑘 𝑣 ′ 𝑣 𝑏𝑢𝑙= 𝑚 𝑏𝑢𝑙 + 𝑚 𝑏𝑙𝑜𝑐𝑘 𝑚 𝑏𝑢𝑙 𝑣 ′ =375 𝑚 𝑠
13
Inelastic car collision
Work-energy 0− 𝑚 𝑆𝐶 + 𝑚 𝑆𝑈𝑉 𝑣 ′ 2 = −𝜇 𝑘 𝑚 𝑆𝐶 + 𝑚 𝑆𝑈𝑉 𝑔 𝑥 𝑣 ′ = 2𝜇 𝑘 𝑔 𝑥 𝑣 ′ = 2∙0.8∙9.8 𝑚 𝑠 2 ∙2.8 𝑚 =6.62 𝑚 𝑠 Conservation of momentum 𝑚 𝑆𝐶 𝑣 𝑆𝐶 + 𝑚 𝑆𝑈𝑉 𝑣 𝑆𝑈𝑉 = 𝑚 𝑆𝐶 + 𝑚 𝑆𝑈𝑉 𝑣 ′ 𝑣 𝑆𝐶= 𝑚 𝑆𝐶 + 𝑚 𝑆𝑈𝑉 𝑚 𝑆𝐶 𝑣 ′ = 𝑘𝑔+2300 𝑘𝑔 920 𝑘𝑔 𝑚 𝑠 =23.2 𝑚/𝑠
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.